Examples for 9.2

The χ^{2} Test of Homogeneity (one margin fixed)

Independent random samples from r populations.
Each sample classified in C response categories.
H_{0} : In each response category, the probabilities are equal for all r populations.

The χ^{2} Test of Independence (neither margin fixed)

A random sample of size n is simultaneously classified with respect to two characteristics, one has r categories and the other C categories.
H_{0} : The two classifications are independent; that is, each cell probability is the product of the row and column marginal probabilities.

Test Statistic:

$$
\mathrm{Q}=\sum_{\text {cells }} \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}
$$

$$
\left\{\begin{array}{l}
\mathrm{O}=\text { observed cell frequency } \\
\mathrm{E}=\frac{\text { row total } \times \text { column total }}{\text { grand total }}
\end{array}\right.
$$

Rejection Region:

$$
\begin{gathered}
\text { Reject } \mathrm{H}_{0} \text { if } \mathrm{Q} \geq \chi_{\alpha}^{2} \\
\text { d.f. }=(\text { No. of rows }-1) \times(\text { No. of columns }-1)=(r-1) \times(c-1)
\end{gathered}
$$

1. We wish to test whether the proportions of individuals with each of the four blood types are the same in two neighboring towns, Town X and Town Y . A random sample of 300individuals from Town X and 200 individuals from Town Y produced the following observed frequencies:

	Blood Type				
	AB				
		A	B	35	300
Town X	120	85	60	35	200
Town Y	100	45	30	25	500
	220	130	90	60	5

Use $\alpha=0.05$ to test $\mathrm{H}_{0}: p_{\mathrm{XO}}=p_{\mathrm{YO}}, p_{\mathrm{XA}}=p_{\mathrm{YA}}, p_{\mathrm{XB}}=p_{\mathrm{YB}}, \quad p_{\mathrm{XAB}}=p_{\mathrm{YAB}}$.
2. In a random sample of 500 voters, each individual was asked whether he or she thought inflation of unemployment was a more serious problem. The individuals were also classified by party affiliation. The results were as follows:

Party	Unemployment	Inflation
Democrat	150	70
Republican	100	80
Other	60	40

Use a 5\% level of significance and test whether political party affiliation and perceived problem are independent.

	0.010	0.025	0.050	$P(X \leq x)$		0.950	0.975	0.990
				0.100	0.900			
r	$\chi_{0.99}^{2}(r)$	$\chi_{0.975}^{2}(r)$	$\chi_{0.95}^{2}(r)$	$\chi_{0.90}^{2}(r)$	$\chi_{0.10}^{2}(r)$	$\chi_{0.05}^{2}(r)$	$\chi_{0.025}^{2}(r)$	$\chi_{0.01}^{2}(r)$
1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28
5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09

3. In a comparative study of two new drugs, A and $B, 120$ patients were treated with drug A and 150 patients with drug B, and the following results were obtained.

	Drug A	Drug B
Cured	78	111
Not cured	42	39
Total	120	150

We wish to test whether drug A and drug B have the same cure rate.

$$
\mathrm{H}_{0}: \quad p_{\mathrm{AC}}=p_{\mathrm{BC}}, \quad p_{\mathrm{AN}}=p_{\mathrm{BN}}
$$

Recall: $\quad \hat{p}_{1}=\frac{\mathrm{Y}_{1}}{n_{1}}=\frac{78}{120}=0.65 . \quad \hat{p}_{2}=\frac{\mathrm{Y}_{2}}{n_{2}}=\frac{111}{150}=0.74$.

$$
\hat{p}=\frac{\mathrm{Y}_{1}+\mathrm{Y}_{2}}{n_{1}+n_{2}}=\frac{78+111}{120+150}=\frac{189}{270}=0.70
$$

Test Statistic:

$$
\mathrm{Z}=\frac{0.65-0.74}{\sqrt{0.70 \cdot 0.30 \cdot\left(\frac{1}{120}+\frac{1}{150}\right)}} \approx-\mathbf{1 . 6 0 3 5 7}
$$

