The χ^2 Test of Homogeneity (one margin fixed)

Independent random samples from r populations. Each sample classified in c response categories.

 H_0 : In each response category, the probabilities are equal for all r populations.

The χ^2 Test of Independence (neither margin fixed)

A random sample of size n is simultaneously classified with respect to two characteristics, one has r categories and the other c categories.

 H_0 : The two classifications are independent; that is, each cell probability is the product of the row and column marginal probabilities.

Test Statistic:

$$Q = \sum_{cells} \frac{(O - E)^2}{E} \begin{cases} O = observed cell frequency\\ E = \frac{row total \times column total}{grand total} \end{cases}$$

Rejection Region:

 $\text{Reject } H_0 \quad \text{if} \quad Q \geq \chi^2_\alpha \,,$

d.f. = (No. of rows -1) × (No. of columns -1) = (r-1) × (c-1)

1. We wish to test whether the proportions of individuals with each of the four blood types are the same in two neighboring towns, Town X and Town Y. A random sample of 300individuals from Town X and 200 individuals from Town Y produced the following observed frequencies:

		Blood	l Type		
	0	А	В	AB	
Town X	120	85	60	35	300
Town Y	100	45	30	25	200
	220	130	90	60	500

Use $\alpha = 0.05$ to test $H_0: p_{XO} = p_{YO}, p_{XA} = p_{YA}, p_{XB} = p_{YB}, p_{XAB} = p_{YAB}.$

2. In a random sample of 500 voters, each individual was asked whether he or she thought inflation of unemployment was a more serious problem. The individuals were also classified by party affiliation. The results were as follows:

Party	Unemployment	Inflation	_
Democrat	150	70	
Republican	100	80	
Other	60	40	

Use a 5% level of significance and test whether political party affiliation and perceived problem are independent.

				<i>P(X</i>	$P(X \le x)$				
	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990	
r	$\chi^2_{0.99}(r)$	$\chi^2_{0.975}(r)$	$\chi^2_{0.95}(r)$	$\chi^2_{0.90}(r)$	$\chi^2_{0.10}(r)$	$\chi^2_{0.05}(r)$	$\chi^2_{0.025}(r)$	$\chi^2_{0.01}(r)$	
1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34	
4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28	
5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09	

	Drug A	Drug B
Cured Not cured	78 42	111 39
Total	120	150

3. In a comparative study of two new drugs, A and B, 120 patients were treated with drug A and 150 patients with drug B, and the following results were obtained.

We wish to test whether drug A and drug B have the same cure rate.

$$H_0: p_{AC} = p_{BC}, p_{AN} = p_{BN}.$$

Recall: $\hat{p}_1 = \frac{Y_1}{n_1} = \frac{78}{120} = 0.65.$ $\hat{p}_2 = \frac{Y_2}{n_2} = \frac{111}{150} = 0.74.$ $\hat{p} = \frac{Y_1 + Y_2}{n_1 + n_2} = \frac{78 + 111}{120 + 150} = \frac{189}{270} = 0.70.$ Test Statistic: $Z = \frac{0.65 - 0.74}{120 + 150} \approx -1.60357.$

est Statistic:
$$Z = \frac{0.65 - 0.74}{\sqrt{0.70 \cdot 0.30 \cdot \left(\frac{1}{120} + \frac{1}{150}\right)}} \approx -1.60357$$