Examples for 9.1

Pearson's χ^{2} Test for Goodness of Fit (Based on Large n)

A random sample of size n is classified into k categories or cells.
Let $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{k}$ denote the respective cell frequencies. $\sum_{i=1}^{k} \mathrm{Y}_{i}=n$.
Denote the cell probabilities by $p_{1}, p_{2}, \ldots, p_{k}$.

$$
\mathrm{H}_{0}: p_{1}=p_{10}, p_{2}=p_{20}, \ldots, p_{k}=p_{k 0} . \quad \sum_{i=1}^{k} p_{i 0}=1 .
$$

	1	2	\ldots	k	Total
Observed frequency O	Y_{1}	Y_{2}	\cdots	Y_{k}	n
Probability under H_{0}	p_{10}	p_{20}	\cdots	$p_{\mathrm{k} 0}$	1
Expected frequency E under H_{0}	$n p_{10}$	$n p_{20}$	\cdots	$n p_{\mathrm{k} 0}$	n

Test Statistic:

$$
\mathrm{Q}_{k-1}=\sum_{i=1}^{k} \frac{\left(\mathrm{Y}_{i}-n p_{i 0}\right)^{2}}{n p_{i 0}}=\sum_{i=1}^{k} \frac{\left(\mathrm{O}_{i}-\mathrm{E}_{i}\right)^{2}}{\mathrm{E}_{i}}=\sum_{\text {cells }} \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}
$$

Rejection Region:

$$
\begin{aligned}
& \text { Reject } \mathrm{H}_{0} \quad \text { if } \quad \mathrm{Q}_{k-1} \geq \chi_{\alpha}^{2} \\
& \text { d.f. }=k-1=(\text { number of cells })-1
\end{aligned}
$$

Pearson's χ^{2} test is an approximate test that is valid only for large samples.
As a rule of thumb, n should be large enough so that expected frequency of each cell is at least 5 .

1. Alex buys a package of Sour Jelly Beans. On the package, it says that 50% of all jelly beans are lemon, 30% are cherry, and 20% are lime. When Alex opens the package, he finds 15 lemon, 9 cherry and 12 lime jelly beans. Is there enough evidence to conclude that the true proportions are different from the ones listed on the package? Use $\alpha=0.05$.
a) State H_{0} and H_{1}.
b) Find the expected frequencies under H_{0}.
c) Calculate the values of the Q_{2} test statistic.
d) Find the critical value χ_{α}^{2}.
e) State your decision (Reject H_{0} or Do NOT Reject H_{0}) at $\alpha=0.05$.
2. The financial manager in charge of accounts receivable department is concerned about the current economic slowdown, because customers sometimes wait longer to pay their bills. She wishes to check on this year's performance of the department by comparing the current outstanding accounts with records from the past few years. Historical records show the following percentages in the respective classifications:

Less than 30 days
Between 30 and 60 days
Between 60 and 90 days
Over 90 days

Percent of Total Receivables

50\%
25\%

10\%
To avoid the time required for a complete audit of the accounts receivable, the financial manager chooses a random sample of 60 accounts and finds $24,18,15$, and 3 accounts, respectively, in the above categories.

$$
\mathrm{H}_{0}: p_{1}=0.50, \quad p_{2}=0.25, \quad p_{3}=0.15, \quad p_{4}=0.10
$$

Perform the appropriate test at the $\alpha=0.05$ level of significance.

	0.010	0.025	0.050	$P(X \leq x)$		0.950	0.975	0.990
				0.100	0.900			
r	$\chi^{2} .999$	$\chi_{0.975}^{2}(r)$	$\chi \chi_{0.95}^{2}(r)$	$\chi_{0.90}^{2}(r)$	$\chi^{2}{ }_{0.10}(r)$	$\chi_{0.05}^{2}(r)$	$\chi_{0.025}^{2}(r)$	$\chi^{2} .01(r)$
1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34
4	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28
5	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09

3. The developers of a math proficiency exam to be used at Anytown State University believe that 60% of all incoming freshmen will be able to pass the exam. In a random sample of 200 incoming freshmen, 105 pass the exam. Does this contradict the claim of the developers?
a) Use $\alpha=0.05$ to perform a goodness-of-fit test

$$
\mathrm{H}_{0}: p_{1}=0.60, p_{2}=0.40 \quad \text { vs. } \quad \mathrm{H}_{1}: \mathrm{H}_{0} \text { is not true. }
$$

b) Use $\alpha=0.05$ to perform a large-sample test

$$
\mathrm{H}_{0}: p=0.60 \quad \text { vs. } \quad \mathrm{H}_{1}: p \neq 0.60
$$

c) Compare the test statistics Q_{1} (part (a)) and Z (part (b)). Compare the critical values $\chi_{0.05}^{2}$ (1 d.f.) (part (a)) and $\pm \mathrm{z}_{0.025}$ (part (b)).
4. It is claimed that X has a Poisson distribution, and 120 observations of X are given in the frequency distribution:

x	frequency
0	12
1	14
2	22
3	24
4	23
5	17
6	5
7	2
8	1

Use a chi-square goodness of fit test to verify this claim.

