STAT 400	Answers for 8.3, 8.1	Stepanov
UIUC		Dalpiaz

1. A scientist wishes to test if a new treatment has a better cure rate than the traditional treatment which cures only 60% of the patients. In order to test whether the new treatment is more effective or not, a test group of 20 patients were given the new treatment. Assume that each personal result is independent of the others.

Trying to decide: cure rate $p \le 0.60$ vs. p > 0.60.

a) If the new treatment has the same success rate as the traditional, what is the probability that at least 14 out of 20 patients (14 or more) will be cured?

 $P(X \ge 14 | p = 0.60) = 1 - CDF(13 | p = 0.60) = 1 - 0.750 = 0.250.$

b) Suppose that 14 out of 20 patients in the test group were cured. Based on the answer for part (a), is there a reason to believe that the new treatment has a better cure rate than the traditional treatment?

If p = 0.60, then 25% of all possible samples would have 14 or more patients cured (out of 20). Thus, it is not unusual to see 14 out of 20 patients cured for a treatment that cures 60% of the patients. We have no reason to believe that the new treatment has a better cure rate than the traditional treatment if X = 14.

c) If the new treatment has the same success rate as the traditional, what is the probability that at least 17 out of 20 patients (17 or more) will be cured?

$$P(X \ge 17 | p = 0.60) = 1 - CDF(16 | p = 0.60) = 1 - 0.984 = 0.016.$$

d) Suppose that 17 out of 20 patients in the test group were cured. Based on the answer for part (c), is there a reason to believe that the new treatment has a better cure rate than the traditional treatment?

If p = 0.60, then only 1.6% of all possible samples would have 17 or more patients cured (out of 20). Thus, it is fairly unusual to see 17 out of 20 patients cured for a treatment that cures 60% of the patients. We have a good reason to believe that the new treatment has a better cure rate than the traditional treatment if X = 17.

- 2. A certain automobile manufacturer claims that at least 80% of its cars meet the tough new standards of the Environmental Protection Agency (EPA). Let *p* denote the proportion of the cars that meet the new EPA standards. The EPA tests a random sample of 400 its cars, suppose that 308 of the 400 cars in our sample meet the new EPA standards.
- a) Perform an appropriate test at a 10% level of significance ($\alpha = 0.10$).

Claim: $p \ge 0.80$	$H_0: p \ge 0.80$	vs. $H_1: p < 0.80$
Y = 308.	<i>n</i> = 400.	$\hat{p} = \frac{Y}{n} = \frac{308}{400} = 0.77.$
Test Statistic:	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 \cdot (1 - p_0)}{n}}} = \frac{1}{2}$	$\frac{0.77 - 0.80}{\sqrt{\frac{0.80 \cdot 0.20}{400}}} = -1.50.$
Rejection Region:	Left – tailed.	Reject H_0 if $Z < -z_{\alpha}$
$\alpha = 0.10$	z 0.10 = 1.282.	Reject H ₀ if $Z < -1.282$.

Decision: The value of the test statistic DOES fall into the Rejection Region.

Reject H₀ at $\alpha = 0.10$.

b) Perform an appropriate test at a 5% level of significance ($\alpha = 0.05$).

Rejection Region:	Left – tailed.	Reject H_0 if $Z < -z_{\alpha}$
$\alpha = 0.05$	z _{0.05} = 1.645.	Reject H ₀ if $Z < -1.645$.

Decision: The value of the test statistic does NOT fall into the Rejection Region.

```
Do NOT Reject H<sub>0</sub> at \alpha = 0.05.
```

c) Find the p-value of the appropriate test.

Left – tailed. P-value = P($Z \le -1.50$) = **0.0668**.

d) Using the p-value from part (c), state your decision (Accept H₀ or Reject H₀) at $\alpha = 0.08$.

```
0.0668 = p-value < \alpha = 0.08. Reject H<sub>0</sub> at \alpha = 0.08.
```

- **3.** Alex wants to test whether a coin is fair or not. Suppose he observes 477 heads in 900 tosses. Let *p* denote the probability of obtaining heads.
- a) Perform the appropriate test using a 10% level of significance.

Claim: p = 0.50H₀: p = 0.50 vs. H₁: $p \neq 0.50$ Y = 477. n = 900. $\hat{p} = \frac{Y}{n} = \frac{477}{900} = 0.53.$ Test Statistic: $Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 \cdot (1 - p_0)}{n}}} = \frac{0.53 - 0.50}{\sqrt{\frac{0.50 \cdot 0.50}{900}}} = 1.80.$

Rejection Region:Two - tailed.Reject
$$H_0$$
 if $Z < -z_{\alpha/2}$ or $Z > z_{\alpha/2}$ $\alpha = 0.10$ $\alpha/2$ = 0.05. $z_{0.05} = 1.645$.Reject H_0 if $Z < -1.645$ or $Z > 1.645$.

Decision:

The value of the test statistic **does** fall into the Rejection Region.

Reject H₀ at $\alpha = 0.10$.

OR

```
P-value: Two – tailed.
```

P-value = P(|Z| > 1.80) = 2 · 0.0359 = **0.0718**.

Decision:

$$0.0718 = p$$
-value $< \alpha = 0.10$. **Reject H**₀ at $\alpha = 0.10$.

b) Find the p-value of the test in part (a).

Two – tailed. P-value = $P(|Z| > 1.80) = 2 \cdot 0.0359 = 0.0718$.

c) Using the p-value from part (b), state your decision (Accept H_0 or Reject H_0) for $\alpha = 0.05$.

$$0.0718 = p$$
-value > $\alpha = 0.05$. **Do NOT Reject H**₀ at $\alpha = 0.05$.

4. $H_0: p \le 0.20$ vs. $H_1: p > 0.20$.

Y = 72. *n* = 300.

Compute the p-value.

State your decision at $\alpha = 0.05$.

$$\hat{p} = \frac{Y}{n} = \frac{72}{300} = 0.24.$$

Test Statistic:
$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 \cdot (1 - p_0)}{n}}} = \frac{0.24 - 0.20}{\sqrt{\frac{0.20 \cdot 0.80}{300}}} = 1.73.$$

P-value:

Rightt – tailed.

P-value = P(Z > 1.73) = **0.0418**.

0.0418 = p-value $< \alpha = 0.05$.

Reject H₀ at $\alpha = 0.05$.