1. A scientist wishes to test if a new treatment has a better cure rate than the traditional treatment which cures only 60% of the patients. In order to test whether the new treatment is more effective or not, a test group of 20 patients were given the new treatment. Assume that each personal result is independent of the others.

Trying to decide: cure rate $p \leq 0.60$ vs. $p>0.60$.
a) If the new treatment has the same success rate as the traditional, what is the probability that at least 14 out of 20 patients (14 or more) will be cured?
$\mathrm{P}(\mathrm{X} \geq 14 \mid p=0.60)=1-\mathrm{CDF}(13 \mid p=0.60)=1-0.750=\mathbf{0 . 2 5 0}$.
b) Suppose that 14 out of 20 patients in the test group were cured. Based on the answer for part (a), is there a reason to believe that the new treatment has a better cure rate than the traditional treatment?

If $p=0.60$, then 25% of all possible samples would have 14 or more patients cured (out of 20). Thus, it is not unusual to see 14 out of 20 patients cured for a treatment that cures 60% of the patients. We have no reason to believe that the new treatment has a better cure rate than the traditional treatment if $X=14$.
c) If the new treatment has the same success rate as the traditional, what is the probability that at least 17 out of 20 patients (17 or more) will be cured?

$$
\mathrm{P}(\mathrm{X} \geq 17 \mid p=0.60)=1-\mathrm{CDF}(16 \mid p=0.60)=1-0.984=\mathbf{0 . 0 1 6} .
$$

d) Suppose that 17 out of 20 patients in the test group were cured. Based on the answer for part (c), is there a reason to believe that the new treatment has a better cure rate than the traditional treatment?

If $p=0.60$, then only 1.6% of all possible samples would have 17 or more patients cured (out of 20). Thus, it is fairly unusual to see 17 out of 20 patients cured for a treatment that cures 60% of the patients. We have a good reason to believe that the new treatment has a better cure rate than the traditional treatment if $\mathrm{X}=17$.
2. A certain automobile manufacturer claims that at least 80% of its cars meet the tough new standards of the Environmental Protection Agency (EPA). Let p denote the proportion of the cars that meet the new EPA standards. The EPA tests a random sample of 400 its cars, suppose that 308 of the 400 cars in our sample meet the new EPA standards.
a) Perform an appropriate test at a 10% level of significance $(\alpha=0.10)$.

Claim: $p \geq 0.80$

$$
\mathrm{H}_{0}: p \geq 0.80 \quad \text { vs. } \quad \mathrm{H}_{1}: p<0.80
$$

$\mathrm{Y}=308 . \quad n=400$.
$\hat{p}=\frac{\mathrm{Y}}{n}=\frac{308}{400}=0.77$.
Test Statistic: $\quad \mathrm{Z}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} \cdot\left(1-p_{0}\right)}{n}}}=\frac{0.77-0.80}{\sqrt{\frac{0.80 \cdot 0.20}{400}}}=\mathbf{- 1 . 5 0}$.
Rejection Region: Left-tailed. \quad Reject H_{0} if $Z<-Z_{\alpha}$

$$
\alpha=0.10 \quad \mathrm{Z}_{0.10}=1.282 . \quad \text { Reject } \mathrm{H}_{0} \text { if } \mathrm{Z}<-1.282
$$

Decision: The value of the test statistic DOES fall into the Rejection Region.

Reject H_{0} at $\alpha=\mathbf{0 . 1 0}$.

b) Perform an appropriate test at a 5% level of significance ($\alpha=0.05$).

Rejection Region: Left - tailed. \quad Reject H_{0} if $\mathrm{Z}<-\mathrm{Z}_{\alpha}$

$$
\alpha=0.05 \quad \mathrm{Z}_{0.05}=1.645 . \quad \text { Reject } \mathrm{H}_{0} \text { if } \mathrm{Z}<-1.645
$$

Decision: The value of the test statistic does NOT fall into the Rejection Region.

$$
\text { Do NOT Reject } \mathrm{H}_{0} \text { at } \alpha=0.05
$$

c) Find the p-value of the appropriate test.

Left - tailed. $\quad \mathrm{P}$-value $=\mathrm{P}(\mathrm{Z} \leq-1.50)=\mathbf{0 . 0 6 6 8}$.
d) Using the p-value from part (c), state your decision (Accept H_{0} or Reject H_{0}) at $\alpha=0.08$.
$0.0668=$ p-value $<\alpha=0.08$. Reject H_{0} at $\boldsymbol{\alpha}=\mathbf{0 . 0 8}$.
3. Alex wants to test whether a coin is fair or not. Suppose he observes 477 heads in 900 tosses. Let p denote the probability of obtaining heads.
a) Perform the appropriate test using a 10% level of significance.

Claim: $p=0.50$
$\mathrm{H}_{0}: p=0.50$
vs. $\quad \mathrm{H}_{1}: p \neq 0.50$
$Y=477$.

$$
n=900 .
$$

$$
\hat{p}=\frac{\mathrm{Y}}{n}=\frac{477}{900}=0.53
$$

Test Statistic: $\quad \mathrm{Z}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} \cdot\left(1-p_{0}\right)}{n}}}=\frac{0.53-0.50}{\sqrt{\frac{0.50 \cdot 0.50}{900}}}=\mathbf{1 . 8 0}$.

Rejection Region: Two - tailed.
Reject H_{0} if $\mathrm{Z}<-\mathrm{Z}_{\alpha / 2}$ or $\mathrm{Z}>\mathrm{Z}_{\alpha / 2}$
$\alpha=0.10 \quad \alpha / 2=\mathbf{0 . 0 5} \quad \mathrm{Z}_{0.05}=\mathbf{1 . 6 4 5}$.
Reject H_{0} if $\mathrm{Z}<-1.645$ or $\mathrm{Z}>1.645$.

Decision:

The value of the test statistic does fall into the Rejection Region.

Reject H_{0} at $\boldsymbol{\alpha}=\mathbf{0 . 1 0}$.

OR
P-value: Two - tailed.

$$
\text { P-value }=P(|Z|>1.80)=2 \cdot 0.0359=\mathbf{0 . 0 7 1 8}
$$

Decision:

$$
0.0718=\mathrm{p} \text {-value }<\alpha=0.10 . \quad \text { Reject } \mathbf{H}_{0} \text { at } \alpha=\mathbf{0 . 1 0} .
$$

b) Find the p-value of the test in part (a).

Two - tailed. $\quad \mathrm{P}$-value $=\mathrm{P}(|\mathrm{Z}|>1.80)=2 \cdot 0.0359=\mathbf{0 . 0 7 1 8}$.
c) Using the p-value from part (b), state your decision (Accept H_{0} or Reject H_{0}) for $\alpha=0.05$.

$$
0.0718=\text { p-value }>\alpha=0.05
$$

4. $\mathrm{H}_{0}: p \leq 0.20$ vs. $\mathrm{H}_{1}: p>0.20$.

$$
\mathrm{Y}=72 . \quad n=300
$$

Compute the p-value.
State your decision at $\alpha=0.05$.

$$
\hat{p}=\frac{\mathrm{Y}}{n}=\frac{72}{300}=0.24
$$

Test Statistic: $\quad \mathrm{Z}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} \cdot\left(1-p_{0}\right)}{n}}}=\frac{0.24-0.20}{\sqrt{\frac{0.20 \cdot 0.80}{300}}}=\mathbf{1 . 7 3}$.

P-value: \quad Rightt - tailed. $\quad \mathrm{P}$-value $=\mathrm{P}(\mathrm{Z}>1.73)=\mathbf{0 . 0 4 1 8}$.
$0.0418=\mathrm{p}$-value $<\alpha=0.05$.
Reject H_{0} at $\alpha=0.05$.

