STAT UIUC				Stepanov Dalpiaz
1.	A scientist wishes to test if a new treatment has a better	CDF @ x		x
	cure rate than the traditional treatment which cures only			р
	60% of the patients. In order to test whether the new	п	x	0.60
	treatment is more effective or not, a test group of 20	20	0	0.000
	patients were given the new treatment. Assume that		1	0.000
	each personal result is independent of the others.		2	0.000
			3	0.000
Trying to decide: cure rate $p \le 0.60$ vs. $p > 0.60$.			4	0.000
			5	0.002
a)	If the new treatment has the same success rate as the		6	0.006
	traditional, what is the probability that at least 14 out		7	0.021
	of 20 patients (14 or more) will be cured?		8	0.057
			9	0.128
			10	0.245
			11	0.404
			12	0.584
			13	0.750
			14	0.874
			15	0.949
b)	Suppose that 14 out of 20 patients in the test group		16	0.984
	were cured. Based on the answer for part (a), is there		17	0.996
	a reason to believe that the new treatment has a better		18	0.999
	cure rate than the traditional treatment?		19	1.000

c) If the new treatment has the same success rate as the traditional, what is the probability that at least 17 out of 20 patients (17 or more) will be cured?

d) Suppose that 17 out of 20 patients in the test group were cured. Based on the answer for part (c), is there a reason to believe that the new treatment has a better cure rate than the traditional treatment?

A **null hypothesis**, denoted by H_0 , is an assertion about one or more population parameters. This is the assertion we hold as true until we have sufficient statistical evidence to conclude otherwise.

The **alternative hypothesis**, denoted by H_1 , is the assertion of all situations *not* covered by the null hypothesis.

The test is designed to assess the strength of the evidence against the null hypothesis.

	H ₀ true	H ₀ false
Accept H ₀ (Do NOT Reject H ₀)	\odot	Type II Error
Reject H ₀	Type I Error	\odot

 α = significance level = P (Type I Error) = P (Reject H₀ | H₀ is true)

 $\beta = P(\text{Type II Error}) = P(\text{Do Not Reject H}_0 | H_0 \text{ is NOT true})$

Power = $1 - P(\text{Type II Error}) = P(\text{Reject } H_0 | H_0 \text{ is NOT true})$

Testing Hypotheses about a Population Proportion p

Null		Alternative	
$\mathbf{H}_0: p \ge p_0$	vs.	$H_1: p < p_0$	Left – tailed.
$\mathbf{H}_0: p \le p_0$	vs.	$H_1: p > p_0$	Right – tailed.
$H_0: p = p_0$	vs.	$\mathbf{H}_1: p \neq p_0$	Two – tailed.

where Y is the number of S's in n independent trials.

Rejection Region:

If the value of the Test Statistic falls into the Rejection Region, then Reject H_0 otherwise, Accept H_0 (Do NOT Reject H_0) 2. A certain automobile manufacturer claims that at least 80% of its cars meet the tough new standards of the Environmental Protection Agency (EPA). Let p denote the proportion of the cars that meet the new EPA standards. The EPA tests a random sample of 400 its cars, suppose that 308 of the 400 cars in our sample meet the new EPA standards.

a) Perform an appropriate test at a 10% level of significance ($\alpha = 0.10$).

Claim:

 H_0 : vs. H_1 :

Test Statistic:

Rejection Region:

Decision:

b) Perform an appropriate test at a 5% level of significance ($\alpha = 0.05$).

Rejection Region:

Decision:

The **P-value** (**observed level of significance**) is the probability, computed assuming that H_0 is true, of obtaining a value of the test statistic as extreme as, or more extreme than, the observed value.

(The smaller the p-value is, the stronger is evidence against \boldsymbol{H}_0 provided by the data.)

P-value > α	Do NOT Reject H ₀	(Accept H_0).
P-value $< \alpha$	Reject H ₀ .	

Computing P-value:

c) Find the p-value of the appropriate test.

d) Using the p-value from part (c), state your decision (Accept H₀ or Reject H₀) at $\alpha = 0.08$.

- 3. Alex wants to test whether a coin is fair or not. Suppose he observes 477 heads in 900 tosses. Let p denote the probability of obtaining heads.
- a) Perform the appropriate test using a 10% level of significance.

Claim:

 H_0 : vs. H_1 :

Test Statistic:

Rejection Region:

Decision:

b) Find the p-value of the test in part (a).

c) Using the p-value from part (b), state your decision (Accept H_0 or Reject H_0) for $\alpha = 0.05$.