Examples for 8.1 (Part 1)

Hypotheses Testing for the population mean μ

- 1. The overall standard deviation of the diameters of the ball bearings is $\sigma = 0.005$ mm. The overall mean diameter of the ball bearings must be 4.300 mm. A sample of 81 ball bearings had a sample mean diameter of 4.299 mm. Is there a reason to believe that the actual overall mean diameter of the ball bearings is not 4.300 mm?
- a) Perform the appropriate test using a 10% level of significance.

Claim:

_

 H_0 : vs. H_1 :

Test Statistic:

Rejection Region:	P-value:
Decision:	Decision:
Confidence Interval:	Decision:

b) State your decision (Accept H₀ or Reject H₀) for the significance level $\alpha = 0.05$.

- 2. A trucking firm believes that its mean weekly loss due to damaged shipments is at most \$1800. Half a year (26 weeks) of operation shows a sample mean weekly loss of \$1921.54 with a sample standard deviation of \$249.39.
- a) Perform the appropriate test. Use the significance level $\alpha = 0.10$.

Claim:

 H_0 : vs. H_1 :

Test Statistic:

Rejection Region:	P-value:
Decision:	Decision:

b) State your decision (Accept H₀ or Reject H₀) for the significance level $\alpha = 0.05$.

r	<i>t</i> 0.40	t 0.25	t 0.20	t 0.15	t 0.10	t 0.05	t 0.025	<i>t</i> 0.02	t 0.01	t 0.005
25	0.256	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787

The t Distribution

3. *Metaltech Industries* manufactures carbide drill tips used in drilling oil wells. The life of a carbide drill tip is measured by how many feet can be drilled before the tip wears out. *Metaltech* claims that under typical drilling conditions, the life of a carbide tip follows a normal distribution with mean of at least 32 feet. Suppose some customers disagree with *Metaltech*'s claims and argue that *Metaltech* is overstating the mean (i.e. the mean is actually less than 32). *Metaltech* agrees to examine a random sample of 25 carbide tips to test its claim against the customers' claim. If the *Metaltech*'s claim is rejected, *Metaltech* has agreed to give customers a price rebate on past purchases. Suppose *Metaltech* decided to use a 5% level of significance and the observed sample mean is 30.5 feet with the sample variance 16 feet². Perform the appropriate test.

Claim:

The t Distribution

H ₀ :	VS.	H ₁ :		
Test Statistic:				
Rejection Region:		P-value:		
Decision:		Decision:		

r	<i>t</i> 0.40	t _{0.25}	<i>t</i> 0.20	t 0.15	t 0.10	t _{0.05}	t _{0.025}	<i>t</i> 0.02	<i>t</i> _{0.01}	t 0.005
24	0.256	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797