STAT 400 UIUC

Examples for 7.3, 8.3 (Part 2)

Consider two dichotomous populations, with "success" proportions p_{1} and p_{2}, respectively. Consider the sample proportions

$$
\hat{p}_{1}=\frac{x_{1}}{n_{1}} \quad \text { and } \quad \hat{p}_{2}=\frac{x_{2}}{n_{2}}
$$

where n_{1} and n_{2} are the sample sizes and x_{1} and x_{2} are the numbers of "successes" in the two samples from populations 1 and 2, respectively.

If n_{1} and n_{2} are large, then $\left(\hat{p}_{1}-\hat{p}_{2}\right)$ is approximately normal with mean $p_{1}-p_{2}$ and standard deviation $\sqrt{\frac{p_{1} \cdot\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2} \cdot\left(1-p_{2}\right)}{n_{2}}}$.

The confidence interval for the difference between two population proportions $p_{1}-p_{2}$ is

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{\alpha / 2} \cdot \sqrt{\frac{\hat{p}_{1} \cdot\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2} \cdot\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

$\mathrm{H}_{0}: p_{1}=p_{2}$

$$
\begin{aligned}
& \mathrm{H}_{1}: p_{1}<p_{2} \\
& \mathrm{H}_{1}: p_{1}>p_{2} \\
& \mathrm{H}_{1}: p_{1} \neq p_{2}
\end{aligned}
$$

Test Statistic:
$Z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p} \cdot(1-\hat{p}) \cdot\left(1 / n_{1}+1 / n_{2}\right)}}$,
where $\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}=\frac{n_{1} \cdot \hat{p}_{1}+n_{2} \cdot \hat{p}_{2}}{n_{1}+n_{2}}$.

1. In a comparative study of two new drugs, A and $B, 120$ patients were treated with drug A and 150 patients with drug B, and the following results were obtained.

	Drug A	Drug B
Cured	78	111
Not cured	42	39
Total	120	150

a) Construct a 95% confidence interval for the difference in the cure rates of the two drugs.
b) We wish to test whether drug B has a higher cure rate than drug A. Find the p -value of the appropriate test.

