1. A machine makes $1 / 2$-inch ball bearings. In a random sample of 41 bearings, the sample standard deviation of the diameters of the bearings was 0.02 inch. Assume that the diameters of the bearings are approximately normally distributed. Construct a 90% confidence interval for the standard deviation of the diameters of the bearings.
$\mathrm{s}=0.02 . \quad n=41$.
The confidence interval : $\quad\left(\sqrt{\frac{(n-1) \cdot \mathrm{s}^{2}}{\chi_{\alpha / 2}^{2}}}, \sqrt{\frac{(n-1) \cdot \mathrm{s}^{2}}{\chi^{2}{ }_{1-\alpha / 2}}}\right)$.
90% confidence level $\quad \alpha=0.10 \quad \alpha / 2=\mathbf{0 . 0 5}$.
$n-1=40$ degrees of freedom.

$$
\begin{gathered}
\chi_{\alpha / 2}^{2}=\chi_{0.05}^{2}=55.76 . \quad \chi_{1-\alpha / 2}^{2}=\chi_{0.95}^{2}=26.51 . \\
\left(\sqrt{\frac{(41-1) \cdot 0.02^{2}}{55.76}}, \sqrt{\frac{(41-1) \cdot 0.02^{2}}{26.51}}\right)
\end{gathered}
$$

2. The following random sample was obtained from $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution:
16
12
18
13
$21 \quad 15$
8
17

Recall: $\quad \bar{x}=15, \quad s^{2}=16, \quad s=4$.
a) Construct a 95% confidence interval for the overall standard deviation.

Confidence Interval for $\sigma^{2}: \quad\left(\frac{(n-1) \cdot s^{2}}{\chi_{\alpha / 2}^{2}}, \frac{(n-1) \cdot s^{2}}{\chi_{1-\alpha / 2}^{2}}\right)$.

$$
\alpha=0.05 . \quad \alpha / 2=0.025 . \quad 1-\alpha / 2=0.975
$$

$$
\text { number of degrees of freedom }=n-1=8-1=7 \text {. }
$$

$$
\chi_{\alpha / 2}^{2}=16.01 . \quad \chi_{1-\alpha / 2}^{2}=1.690
$$

$$
\left(\frac{(8-1) \cdot 16}{16.01}, \frac{(8-1) \cdot 16}{1.690}\right)
$$

$$
(6.9956 ; 66.2722)
$$

Confidence Interval for $\sigma: \quad(\sqrt{6.9956}, \sqrt{66.2722})=(2.645 ; 8.141)$
b) Construct a 95\% confidence lower bound for the overall standard deviation.

$$
\begin{array}{lll}
\left(\sqrt{\frac{(n-1) \cdot \mathrm{s}^{2}}{\chi_{\alpha}^{2}}}, \infty\right) & 7 \text { degrees of freedom } & \chi_{0.05}^{2}=14.07 . \\
& \left(\sqrt{\frac{(8-1) \cdot 16}{14.07}}, \infty\right) & \mathbf{(2 . 8 2} ; \infty)
\end{array}
$$

c) Construct a 95\% confidence upper bound for the overall standard deviation.
95% conf. upper bound for $\sigma: \quad\left(0, \sqrt{\frac{(n-1) \cdot \mathrm{s}^{2}}{\chi_{1-\alpha}^{2}}}\right)=\left(0, \sqrt{\frac{(8-1) \cdot 16}{2.167}}\right)=(\mathbf{0}, 7.19)$

