Answers for 5.5, 7.1

$1 / 4$. Let Z be a $N(0,1)$ standard normal random variable.
Then $\mathrm{X}=\mathrm{Z}^{2}$ has a chi-square distribution with 1 degree of freedom.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{M}_{\mathrm{X}}(t)
\end{array}=\mathrm{E}\left(e^{t \mathrm{Z}^{2}}\right)=\int_{-\infty}^{\infty} e^{t z^{2}} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z \\
& \quad=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\left(z^{2} / 2\right) \cdot(1-2 t)} d z=\frac{1}{(1-2 t)^{1 / 2}}, \quad t<1 / 2 \\
& \text { since } \frac{(1-2 t)^{1 / 2}}{\sqrt{2 \pi}} e^{-\left(z^{2} / 2\right) \cdot(1-2 t)} \text { is the p.d.f. of a } \mathrm{N}\left(0, \frac{1}{1-2 t}\right) \text { random variable. } \\
& \Rightarrow \quad \mathrm{X} \text { has a } \chi^{2}(1) \text { distribution. }
\end{aligned}
$$

$\mathbf{1 / 2}$. Let X and Y be be two independent χ^{2} random variables with m and n degrees of freedom, respectively. Then $\mathrm{W}=\mathrm{X}+\mathrm{Y}$ has a chi-square distribution with $m+n$ degrees of freedom.

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{X}}(t)=\frac{1}{(1-2 t)^{m / 2}}, \quad t<1 / 2, \quad \mathrm{M}_{\mathrm{Y}}(t)=\frac{1}{(1-2 t)^{n / 2}}, \quad t<1 / 2 . \\
& \mathrm{M}_{\mathrm{W}}(t)=\mathrm{M}_{\mathrm{X}}(t) \cdot \mathrm{M}_{\mathrm{Y}}(t)=\frac{1}{(1-2 t)^{(m+n) / 2}}, \quad t<1 / 2 . \\
& \Rightarrow \quad \mathrm{W} \text { has a } \chi^{2}(m+n) \text { distribution. }
\end{aligned}
$$

1. A manufacturer of TV sets wants to find the average selling price of a particular model. A random sample of 25 different stores gives the mean selling price as $\$ 342$ with a sample standard deviation of $\$ 14$. Assume the prices are normally distributed. Construct a 95% confidence interval for the mean selling price of the TV model.
σ is unknown. $\quad n=25-$ small. \quad The confidence interval: $\overline{\mathrm{X}} \pm \mathrm{t}_{\alpha / 2} \cdot \frac{\mathrm{~s}}{\sqrt{n}}$.

$$
n-1=25-1=24 \text { degrees of freedom. }
$$

$\begin{array}{llc}95 \% \text { confidence level, } & \alpha=0.05, & \alpha / 2=0.025,\end{array} \mathrm{t}_{\alpha / 2}(24)=2.064$.
2. The following random sample was obtained from $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution:
16
12
18
13
21
15
17
a) Compute the sample mean and the sample standard deviation.

$$
\bar{x}=\frac{\sum x}{n}=\frac{16+12+18+13+21+15+8+17}{8}=\frac{120}{8}=15 .
$$

x	x^{2}
16	256
12	144
18	324
13	169
21	441
15	225
8	64
17	289

$s^{2}=\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}=\frac{1912-\frac{(120)^{2}}{8}}{7}=16 . \quad s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{112}{7}=16$.

$$
s=\sqrt{s^{2}}=\sqrt{16}=4 \text {. }
$$

b) Construct a 95% confidence interval for μ.

Confidence interval: $\quad \bar{x} \pm \mathrm{t}_{\alpha / 2} \cdot \frac{s}{\sqrt{n}} . \quad n-1=7$ degrees of freedom.

95\% confidence level,
$\alpha=0.05$,
$\alpha / 2=0.025$, $t_{0.025}=2.365$.
$b^{1 / 2}$) Construct a 90% confidence interval for μ.

Confidence interval: $\quad \bar{x} \pm \mathrm{t}_{\alpha / 2} \cdot \frac{s}{\sqrt{n}} . \quad n-1=7$ degrees of freedom.
90% confidence level, $\quad \alpha=0.10, \quad \alpha / 2=0.05, \quad \mathrm{t}_{0.05}=1.895$.
$15 \pm 1.895 \cdot \frac{4}{\sqrt{8}}$
15 ± 2.68
($12.32,17.68$)
c) Construct a 90% confidence upper bound for μ.

$$
\begin{aligned}
& \left(-\infty, \overline{\mathrm{X}}+\mathrm{t}_{\alpha} \frac{s}{\sqrt{n}}\right) \quad n-1=7 \text { degrees of freedom } \quad \mathrm{t}_{0.10}=1.415 . \\
& \left(-\infty, 15+1.415 \cdot \frac{4}{\sqrt{8}}\right) \quad(-\infty ; 17)
\end{aligned}
$$

d) Construct a 99% confidence lower bound for μ.

$$
\begin{gathered}
\left(\overline{\mathrm{X}}-\mathrm{t}_{\alpha} \frac{s}{\sqrt{n}}, \infty\right) \quad n-1=7 \text { degrees of freedom } \quad \mathrm{t}_{0.01}=2.998 . \\
\left(15-2.998 \cdot \frac{4}{\sqrt{8}}, \infty\right) \quad(\mathbf{1 0 . 7 6} ; \infty)
\end{gathered}
$$

