STAT 400 UIUC

Examples for 5.5, 7.1

Stepanov Dalpiaz

Let X_1, X_2, \dots, X_n be i.i.d. $\mathbf{N}(\mu, \sigma^2)$.

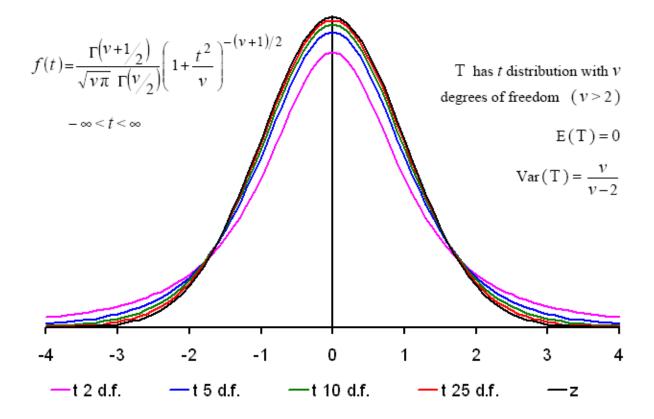
Let

$$\overline{\mathbf{X}} = \frac{\sum \mathbf{X}_{i}}{n} = \frac{\mathbf{X}_{1} + \mathbf{X}_{2} + \dots + \mathbf{X}_{n}}{n} \qquad (\text{ sample mean })$$
$$\mathbf{S}^{2} = \frac{\sum \left(\mathbf{X}_{i} - \overline{\mathbf{X}}\right)^{2}}{n-1} \qquad (\text{ sample variance })$$

Then

 $\overline{\mathbf{X}} \text{ and } \mathbf{S}^2 \text{ are independent};$ $\overline{\mathbf{X}} \text{ has } \mathbf{N}\left(\mu, \frac{\sigma^2}{n}\right) \text{ distribution};$ $\frac{\overline{\mathbf{X}} - \mu}{\sigma \sqrt{n}} \text{ has } \mathbf{N}(0, 1) \text{ distribution};$ $\frac{\sum \left(\mathbf{X}_i - \mu\right)^2}{\sigma^2} \text{ has } \chi^2(n) \text{ distribution};$ $\frac{\left(n-1\right) \cdot \mathbf{S}^2}{\sigma^2} = \frac{\sum \left(\mathbf{X}_i - \overline{\mathbf{X}}\right)^2}{\sigma^2} \text{ has } \chi^2(n-1) \text{ distribution};$ $\frac{\overline{\mathbf{X}} - \mu}{S \sqrt{n}} \text{ has } t(n-1) \text{ distribution}.$

A $(1 - \alpha)$ 100% confidence interval for the population mean μ


$$\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \qquad \overline{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

n-1 degrees of freedom

William Gosset (1876-1937)

The *t* Distribution

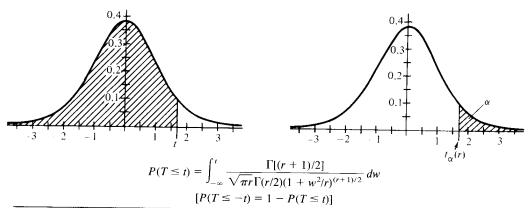
EXCEL:

= TINV (α, ν) gives $t_{\alpha/2}$ for t distribution with ν degrees of freedom = TDIST $(t, \nu, 1)$ gives the upper tail probability for t distribution with ν degrees of freedom, P(T > t). = TDIST $(t, \nu, 2)$ gives $2 \times P(T > t)$. 1. A manufacturer of TV sets wants to find the average selling price of a particular model. A random sample of 25 different stores gives the mean selling price as \$342 with a sample standard deviation of \$14. Assume the prices are normally distributed. Construct a 95% confidence interval for the mean selling price of the TV model.

2. The following random sample was obtained from $N(\mu, \sigma^2)$ distribution: 16 12 18 13 21 15 8 17

a) Compute the sample mean and the sample standard deviation.

- **2.** (continued)
- b) Construct a 95% confidence interval for μ .


c) Construct a 90% confidence upper bound for μ .

d) Construct a 99% confidence lower bound for μ .

678 Appendix C Tables

TABLE VI

The t Distribution

	$P(T \leq t)$						
	0.60	0.75	0.90	0.95	0.975	0.99	0.995
r	$t_{0.40}(r)$	$t_{0.25}(r)$	$t_{0.10}(r)$	$i_{0.05}(r)$	$t_{0.025}(r)$	$t_{0.01}(r)$	$t_{0.005}(r)$
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012
14	0.258	0.692	1.345	1.761	2.145	2.624	2.997
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750
œ	0.253	0.674	1.282	1.645	1.960	2.326	2.576

This table is taken from Table III of Fisher and Yates: *Statistical Tables for Biological, Agricultural, and Medical Research, published by Longman Group Ltd., London (previously published by Oliver and Boyd, Edinburgh), by permission of the authors and publishers.*