STAT 400		Stepanov
UIUC	Examples for 7.1, 7.4	Dalpiaz

- 1. Suppose the lifetime of a particular brand of light bulbs is normally distributed with standard deviation of $\sigma = 75$ hours and unknown mean.
- a) What is the probability that in a random sample of n = 49 bulbs, the average lifetime \overline{X} is within 21 hours of the overall average lifetime?

b) Suppose the sample average lifetime of n = 49 bulbs is $\overline{x} = 843$ hours. Construct a 95% confidence interval for the overall average lifetime for light bulbs of this brand.

A **confidence interval** is a *range of numbers* believed to include an unknown population parameter. Associated with the interval is a measure of the *confidence* we have that the interval does indeed contain the parameter of interest.

A $(1 - \alpha)$ 100% confidence interval

for the population mean $\boldsymbol{\mu}$

when σ is known and sampling is done from a normal population, or with a large sample, is

$$\left(\overline{\mathbf{X}} - z_{\alpha/2} \cdot \frac{\boldsymbol{\sigma}}{\sqrt{n}}, \ \overline{\mathbf{X}} + z_{\alpha/2} \cdot \frac{\boldsymbol{\sigma}}{\sqrt{n}}\right)$$

$$\overline{X} \qquad \pm \qquad \begin{array}{c} z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \\ \text{estimate} \\ \text{(point estimate)} \\ \end{array} \qquad \qquad \begin{array}{c} \overline{X} \qquad \pm \epsilon \\ \epsilon \\ \end{array} \qquad \qquad \qquad \begin{array}{c} \overline{X} \pm \epsilon \\ \epsilon \\ \epsilon \\ \overline{X} \pm \epsilon \\ \epsilon \\ \overline{X} \pm \epsilon \\ \epsilon \\ \overline{X} \pm \epsilon \\ \epsilon \\ \epsilon \\ \overline{X} \pm \overline{X} \\ \overline{X} \pm \overline{$$

1. (continued)

Suppose the sample average lifetime of n = 49 bulbs is $\overline{x} = 843$ hours.

b) Construct a 95% confidence interval for the overall average lifetime for light bulbs of this brand.

c) Construct a 90% confidence interval for the overall average lifetime for light bulbs.

d) Construct a 92% confidence interval for the overall average lifetime for light bulbs.

Minimum required sample size in estimating the population mean μ to within ϵ with $(1-\alpha)\,100\,\%$ confidence is

$$n = \left[\frac{\mathbf{z}_{\alpha/2} \cdot \boldsymbol{\sigma}}{\varepsilon}\right]^2.$$

Always round n up.

2. How many test runs of an automobile are required for determining its average miles-per-gallon rating on the highway to within 0.5 miles per gallon with 95% confidence, if a guess is that the variance of the population of miles per gallon is about 6.25?

- **1.** (continued)
- e) What is the minimum sample size required if we wish to estimate the overall average lifetime for light bulbs to within 10 hours with 90% confidence?