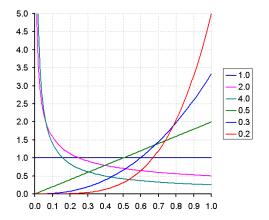
4. Let X_1, X_2, \dots, X_n be a random sample of size n from the distribution with probability density function

$$f(x; \theta) = \begin{cases} \frac{1-\theta}{\theta} & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$
$$0 < \theta < \infty.$$



Dalpiaz

Maximum likelihood estimator of θ is $\hat{\theta} = -\frac{1}{n} \cdot \sum_{i=1}^{n} \ln X_i$. Recall: Method of moments estimator of θ is $\tilde{\theta} = \frac{1-\overline{X}}{\overline{X}} = \frac{1}{\overline{X}} - 1$. $E(X) = \frac{1}{1+\theta}$.

An estimator $\hat{\theta}$ is said to be **unbiased for** θ if $E(\hat{\theta}) = \theta$ for all θ . Def

Is $\hat{\theta}$ unbiased for θ ? That is, does $E(\hat{\theta})$ equal θ ? d)

Jensen's Inequality:

If g is convex on an open interval I and X is a random variable whose support is contained in I and has finite expectation, then

$$\mathbf{E}[g(\mathbf{X})] \ge g[\mathbf{E}(\mathbf{X})].$$

If g is strictly convex then the inequality is strict, unless X is a constant random variable.

e) Is $\tilde{\theta}$ unbiased for θ ? That is, does $E(\tilde{\theta})$ equal θ ?

sample mean

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

$$S^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2$$

6. Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from a population with mean μ and variance σ^2 . Show that the sample mean \overline{X} and the sample variance S^2 are unbiased for μ and σ^2 , respectively.

For an estimator $\hat{\theta}$ of θ , define the **Mean Squared Error** of $\hat{\theta}$ by $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^{2}].$ $E[(\hat{\theta} - \theta)^{2}] = (E(\hat{\theta}) - \theta)^{2} + Var(\hat{\theta}) = (bias(\hat{\theta}))^{2} + Var(\hat{\theta}).$