p.m.f. or p.d.f.
$$f(x; \theta), \quad \theta \in \Omega.$$
 Ω – parameter space.

1. Suppose
$$\Omega = \{1, 2, 3\}$$
 and the p.d.f. $f(x; \theta)$ is

$$\theta = 1$$
: $f(1;1) = 0.6$, $f(2;1) = 0.1$, $f(3;1) = 0.1$, $f(4;1) = 0.2$.

$$\theta = 2$$
: $f(1;2) = 0.2$, $f(2;2) = 0.3$, $f(3;2) = 0.3$, $f(4;2) = 0.2$.

$$\theta = 3$$
: $f(1;3) = 0.3$, $f(2;3) = 0.4$, $f(3;3) = 0.2$, $f(4;3) = 0.1$.

What is the maximum likelihood estimate of θ (based on only one observation of X) if ...

a)
$$X = 1;$$
 b) $X = 2;$

c)
$$X = 3;$$
 d) $X = 4.$

Likelihood function:

$$L(\theta) = L(\theta; x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i; \theta) = f(x_1; \theta) \cdot ... \cdot f(x_n; \theta)$$

It is often easier to consider
$$\ln L(\theta) = \sum_{i=1}^n \ln f(x_i; \theta).$$

Maximum Likelihood Estimator: $\hat{\theta} = \arg \max L(\theta) = \arg \max \ln L(\theta)$.

Method of Moments:

 $E(X) = g(\theta)$. Set $\overline{X} = g(\theta)$. Solve for θ .

2. Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from a Poisson distribution with mean λ , $\lambda > 0$. That is,

P(X = k) =
$$\frac{\lambda^k e^{-\lambda}}{k!}$$
, k = 0, 1, 2, 3, ...

a) Obtain the method of moments estimator of λ , $\tilde{\lambda}$.

b) Obtain the maximum likelihood estimator of λ , $\hat{\lambda}$.

3. Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from a Geometric distribution with probability of "success" *p*, 0 . That is,

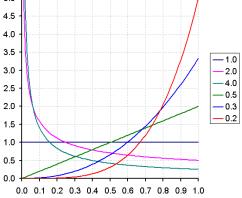
$$P(X=k) = (1-p)^{k-1}p, \quad k=1, 2, 3, ...$$

a) Obtain the method of moments estimator of p, \tilde{p} .

b) Obtain the maximum likelihood estimator of p, \hat{p} .

4. Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from the distribution with probability density function

$$f(x;\theta) = \begin{cases} \frac{1-\theta}{\theta} & 0 \le x \le 1\\ 0 & \text{otherwise} \\ 0 < \theta < \infty. \end{cases}$$



a) Obtain the method of moments estimator of θ , $\tilde{\theta}$.

Method of Moments:

$$E(X) = g(\theta)$$
. Set $\overline{X} = g(\theta)$. Solve for θ .

b) Obtain the maximum likelihood estimator of θ , $\hat{\theta}$.

Likelihood function:

$$L(\theta) = L(\theta; x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i; \theta) = f(x_1; \theta) \cdot \dots \cdot f(x_n; \theta)$$

Maximum Likelihood Estimator: $\hat{\theta} = \arg \max L(\theta) = \arg \max \ln L(\theta)$.

- **4.** (continued)
- c) Suppose n = 3, and $x_1 = 0.2$, $x_2 = 0.3$, $x_3 = 0.5$. Compute the values of the method of moments estimate and the maximum likelihood estimate for θ .

- 5. Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\theta_1, \theta_2)$, where $\Omega = \{ (\theta_1, \theta_2) : -\infty < \theta_1 < \infty, \ 0 < \theta_2 < \infty \}$. That is, here we let $\theta_1 = \mu$ and $\theta_2 = \sigma^2$.
- a) Obtain the maximum likelihood estimator of θ_1 , $\hat{\theta}_1$, and of θ_2 , $\hat{\theta}_2$.

b) Obtain the method of moments estimator of θ_1 , $\tilde{\theta}_1$, and of θ_2 , $\tilde{\theta}_2$.