Examples for 5.8

Markov's Inequality:

Let $u(\mathrm{X})$ be a non-negative function of the random variable X .
If $\mathrm{E}[u(\mathrm{X})]$ exists, then, for every positive constant C,

$$
\mathrm{P}(u(\mathrm{X}) \geq \mathrm{c}) \leq \frac{\mathrm{E}[u(\mathrm{X})]}{\mathrm{c}} .
$$

Chebyshev's Inequality:

Let X be any random variable with mean μ and variance σ^{2}. For any $\varepsilon>0$,

$$
\mathrm{P}(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^{2}}{\varepsilon^{2}}
$$

or, equivalently,

$$
\mathrm{P}(|\mathrm{X}-\mu|<\varepsilon) \geq 1-\frac{\sigma^{2}}{\varepsilon^{2}}
$$

Setting $\varepsilon=k \sigma, k>1$, we obtain

$$
P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

or, equivalently,

$$
\mathrm{P}(|X-\mu|<k \sigma) \geq 1-\frac{1}{k^{2}}
$$

That is, for any $k>1$, the probability that the value of any random variable will be within k standard deviations of its mean is at least $1-\frac{1}{k^{2}}$.

Example 1: \quad Suppose $\mu=\mathrm{E}(\mathrm{X})=17, \sigma=\mathrm{SD}(\mathrm{X})=5$.

$$
\text { Consider interval }(9,25)=(17-8,17+8) . \quad \Rightarrow \quad k=\frac{8}{5}=1.6
$$

$$
\Rightarrow \quad \mathrm{P}(9<\mathrm{X}<25)=\mathrm{P}(|\mathrm{X}-\mu|<1.6 \sigma) \geq 1-\frac{1}{1.6^{2}}=\frac{39}{64}=\mathbf{0 . 6 0 9 3 7 5}
$$

Example 2: \quad Suppose $\mu=\mathrm{E}(\mathrm{X})=17, \sigma=\mathrm{SD}(\mathrm{X})=5$.
Suppose also that the distribution of X is symmetric about the meane
Consider interval $(10,30)=(17-7,17+13)=(\mu-1.4 \sigma, \mu+2.6 \sigma)$.

$$
\begin{aligned}
& \mathrm{P}(10<\mathrm{X}<24)=\mathrm{P}(|\mathrm{X}-\mu|<1.4 \sigma) \geq 1-\frac{1}{1.4^{2}} \approx 0.490 . \\
& \mathrm{P}(4<\mathrm{X}<30)=\mathrm{P}(|\mathrm{X}-\mu|<2.6 \sigma) \geq 1-\frac{1}{2.6^{2}} \approx 0.852 .
\end{aligned}
$$

Since the distribution of X is symmetric about the mean,

$$
\begin{aligned}
& P(10<X<17) \geq \frac{0.490}{2}=0.245, \quad P(17<X<30) \geq \frac{0.852}{2}=0.426 . \\
& \Rightarrow \quad P(10<X<30) \geq 0.245+0.426=\mathbf{0 . 6 7 1}
\end{aligned}
$$

Example 3: \quad Consider a discrete random variable X with p.m.f.

$$
P(X=-1)=1 / 2, \quad P(X=1)=1 / 2 .
$$

Then $\quad \mu=\mathrm{E}(\mathrm{X})=0, \quad \sigma^{2}=\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)=1$.

$$
\begin{aligned}
\Rightarrow \quad & P(|X-\mu| \geq \sigma)=P(|X| \geq 1)=1 . \\
& P(|X-\mu|<\sigma)=P(|X|<1)=0
\end{aligned}
$$

Example 4: (Chebyshev's Inequality cannot be improved)

Let $a>0,0<p<1 / 2$. Consider a discrete random variable X with p.m.f.

$$
\mathrm{P}(\mathrm{X}=-a)=p, \quad \mathrm{P}(\mathrm{X}=0)=1-2 p, \quad \mathrm{P}(\mathrm{X}=a)=p
$$

Then $\quad \mu=\mathrm{E}(\mathrm{X})=0, \quad \sigma^{2}=\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)=2 p a^{2}$.
Let $k=\frac{1}{\sqrt{2 p}}>1$. Then $k \sigma=a$.
$\Rightarrow \quad \mathrm{P}(|\mathrm{X}-\mu| \geq k \sigma)=\mathrm{P}(|\mathrm{X}| \geq a)=2 p=\frac{1}{k^{2}}$. $\mathrm{P}(|\mathrm{X}-\mu|<k \sigma)=\mathrm{P}(|\mathrm{X}|<a)=1-2 p=1-\frac{1}{k^{2}}$.

