Normal Approximation to Binomial Distribution:

	Normal	Binomial
mean	μ	$n \times p$
standard deviation	σ	$\sqrt{n \times p \times(1-p)}$

1. Binomial distribution, $n=25, p=0.50$.

Normal approximation:

$$
\begin{aligned}
& \text { mean }=n \times p=25 \times 0.50=12.5 \\
& n \times p \times(1-p)=25 \times 0.50 \times 0.50=6.25 . \quad \mathrm{SD}=\sqrt{6.25}=2.5
\end{aligned}
$$

a) $\quad \mathrm{P}(\mathrm{X}=17)=\mathrm{PMF} @ 17=\mathbf{0} \mathbf{0} \mathbf{0 3 2 2}$.
b) $\quad \mathrm{P}(\mathrm{X}=17)=\mathrm{P}(16.5 \leq \mathrm{X} \leq 17.5) \approx \mathrm{P}\left(\frac{16.5-12.5}{2.5} \leq \mathrm{Z} \leq \frac{17.5-12.5}{2.5}\right)$
$=\mathrm{P}(1.60 \leq \mathrm{Z} \leq 2.00)=0.9772-0.9452=\mathbf{0 . 0 3 2 0}$.

c) $\quad \mathrm{P}(\mathrm{X} \geq 11)=1-\mathrm{CDF} @ 10=1-0.2122=\mathbf{0 . 7 8 7 8}$.
d) $\quad \mathrm{P}(\mathrm{X} \geq 11)=\mathrm{P}(\mathrm{X} \geq 10.5) \approx \mathrm{P}\left(\mathrm{Z} \geq \frac{10.5-12.5}{2.5}\right)$

$$
=\mathrm{P}(\mathrm{Z} \geq-0.80)=1-0.2119=\mathbf{0 . 7 8 8 1}
$$

e) $\quad \mathrm{P}(10 \leq \mathrm{X} \leq 14)=\mathrm{CDF} @ 14-\mathrm{CDF} @ 9=0.7878-0.1148=\mathbf{0 . 6 7 3 0}$.
f) $\mathrm{P}(10 \leq \mathrm{X} \leq 14)=\mathrm{P}(9.5 \leq \mathrm{X} \leq 14.5) \approx \mathrm{P}\left(\frac{9.5-12.5}{2.5} \leq \mathrm{Z} \leq \frac{14.5-12.5}{2.5}\right)$

$$
=\mathrm{P}(-1.20 \leq \mathrm{Z} \leq 0.80)=0.7881-0.1151=\mathbf{0 . 6 7 3 0} .
$$

2. Let $X=$ number of passengers who do not cancel their reservations.

Then X has Binomial distribution, $n=100, p=0.85$.
Normal approximation:

$$
\begin{array}{r}
\mu=100 \times 0.85=85, \quad \sigma^{2}=100 \times 0.85 \times 0.15=12.75 . \quad \sigma=3.57 . \\
\mathrm{P}(\mathrm{X} \leq 92)=\mathrm{P}(\mathrm{X} \leq 92.5) \approx \mathrm{P}\left(\mathrm{Z} \leq \frac{92.5-85}{3.57}\right)=\mathrm{P}(\mathrm{Z} \leq 2.10)=\mathbf{0 . 9 8 2 1} .
\end{array}
$$

Binomial: $\quad P(X \leq 92)=0.9878$.
2.5. A fair 6 -sided die is rolled 180 times. The sum of the outcomes is likely to be around \qquad , give or take \qquad or so.

The average of the outcomes is likely to be around \qquad give or take \qquad or so.

$$
\begin{aligned}
& \mu=\frac{1+2+3+4+5+6}{6}=\frac{21}{6}=3.5 . \\
& \begin{aligned}
\sigma=\sqrt{\frac{(1-3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}}{6}} \\
\quad=\sqrt{\frac{6.25+2.25+0.25+0.25+2.25+6.25}{6}}=\sqrt{\frac{17.5}{6}} \approx 1.708 . \\
E(\text { Sum })=n \times \mu=180 \times 3.5=630 . \\
S D(\text { Sum })=\sqrt{n} \times \sigma \approx \sqrt{180} \times 1.708 \approx 22.9 .
\end{aligned}
\end{aligned}
$$

The sum of the outcomes is likely to be around $\mathbf{6 3 0}$, give or take $\mathbf{2 3}$ or so.
$\mathrm{E}($ Average $)=\mu=3.5$.
$\operatorname{SD}($ Average $)=\sigma / \sqrt{n} \approx 1.708 / \sqrt{180} \approx 0.1273$.
The average of the outcomes is likely to be around $\mathbf{3 . 5}$, give or take $\mathbf{0 . 1 3}$ or so.

A fair 6-sided die is rolled 180 times. The number of 6's is likely to be around \qquad give or take \qquad or so.

Let X denote the number of 6 's.
Binomial distribution, $\quad n=180, \quad p=1 / 6$.
$\mathrm{E}(\mathrm{X})=n \times p=180 \times 1 / 6=30$.
$\mathrm{SD}(\mathrm{X})=\sqrt{n \times p \times(1-p)}=\sqrt{180 \times 1 / 6 \times 5 / 6}=5$.
The number of 6 's is likely to be around $\mathbf{3 0}$, give or take $\mathbf{5}$ or so.
3. Binomial distribution, $n=180, p=1 / 6$.
a) $\quad \mathrm{P}(\mathrm{X}=35)={ }_{180} \mathrm{C}_{35} \cdot\left(\frac{1}{6}\right)^{35} \cdot\left(\frac{5}{6}\right)^{145}=\mathbf{0 . 0 4 6 4}$.

Normal approximation:

$$
\begin{aligned}
& \text { mean }=n \times p=180 \times 1 / 6=30 . \\
& n \times p \times(1-p)=180 \times 1 / 6 \times 5 / 6=25 . \quad S D=\sqrt{25}=5 .
\end{aligned}
$$

b) $\quad \mathrm{P}(\mathrm{X}=35)=\mathrm{P}(34.5<\mathrm{X}<35.5) \approx \mathrm{P}(0.90<\mathrm{Z}<1.10)$

$$
=0.8643-0.8159=\mathbf{0 . 0 4 8 4} \text {. }
$$

c) $\quad \mathrm{P}(\mathrm{X} \geq 35)=\mathrm{P}(\mathrm{X}>34.5) \approx \mathrm{P}(\mathrm{Z}>0.90)=1-0.8159=\mathbf{0 . 1 8 4 1}$.

$$
\text { Binomial: } \quad \mathrm{P}(\mathrm{X} \geq 35)=\sum_{k=35}^{180} 180 \mathrm{C}_{k} \cdot\left(\frac{1}{6}\right)^{k} \cdot\left(\frac{5}{6}\right)^{180-k} \approx 0.18283 .
$$

d) $\mathrm{P}(20 \leq \mathrm{X} \leq 40)=\mathrm{P}(19.5<\mathrm{X}<40.5) \approx \mathrm{P}(-2.10<\mathrm{Z}<2.10)=\mathbf{0 . 9 6 4 2}$.

Binomial: $\quad \mathrm{P}(20 \leq \mathrm{X} \leq 40)=\sum_{k=20}^{40} 180 \mathrm{C}_{k} \cdot\left(\frac{1}{6}\right)^{k} \cdot\left(\frac{5}{6}\right)^{180-k} \approx 0.965$.
e)* Use Normal approximation to find the probability that the sum of the results is between 600 and 640 (both inclusive)? [Recall: $\mu=3.5, \quad \sigma^{2}=17.5 / 6=35 / 12$.]

$$
\begin{aligned}
& \mathrm{P}(600 \leq \text { Sum } \leq 640)=\mathrm{P}(599.5<\mathrm{Sum}<640.5) \\
& \approx \mathrm{P}\left(\frac{599.5-180 \cdot 3.5}{\sqrt{180} \cdot \sqrt{35 / 12}}<\mathrm{Z}<\frac{640.5-180 \cdot 3.5}{\sqrt{180} \cdot \sqrt{35 / 12}}\right) \\
&=\mathrm{P}(-1.33<\mathrm{Z}<0.46)=\mathbf{0 . 5 8 5 4}
\end{aligned}
$$

4. Poisson distribution, $\lambda=1.4 \cdot 52=72.8$.
a) $\quad \mathrm{P}(\mathrm{X}=68)=\frac{72.8^{68} \cdot e^{-72.8}}{68!}=\mathbf{0 . 0 4 1 1}$.

Normal approximation:

$$
\mu=\lambda=72.8 . \quad \sigma=\sqrt{\lambda}=\sqrt{72.8}=8.5323 .
$$

b) $\quad \mathrm{P}(\mathrm{X}=68)=\mathrm{P}(67.5<\mathrm{X}<68.5) \approx \mathrm{P}(-0.62<\mathrm{Z}<-0.50)$

$$
=0.3085-0.2676=\mathbf{0 . 0 4 0 9}
$$

c) $\quad \mathrm{P}(\mathrm{X} \leq 70)=\mathrm{P}(\mathrm{X}<70.5) \approx \mathrm{P}(\mathrm{Z}<-0.27)=\mathbf{0 . 3 9 3 6}$.

$$
\text { Poisson: } \quad \mathrm{P}(\mathrm{X} \leq 70)=\sum_{k=0}^{70} \frac{72.8^{k} \cdot e^{-72.8}}{k!} \approx 0.40078
$$

d) $\mathrm{P}(65 \leq \mathrm{X} \leq 80)=\mathrm{P}(64.5<\mathrm{X}<80.5) \approx \mathrm{P}(-0.97<\mathrm{Z}<0.90)$

$$
=0.8159-0.1660=\mathbf{0 . 6 4 9 9}
$$

$$
\text { Poisson: } \quad \mathrm{P}(65 \leq \mathrm{X} \leq 80)=\sum_{k=65}^{80} \frac{72.8^{k} \cdot e^{-72.8}}{k!} \approx 0.65218
$$

"Hype" for 0.5 continuity correction:

Let X be a $\operatorname{Binomial}(n=400, p=0.80)$ random variable.

$$
P(X \leq 312)=\mathbf{0 . 1 7 3 8}
$$

	A	B				
1	=BINOMDIST(312,400,0.8,1)					
2			\Rightarrow		A	B
:---:	:---:	:---:				
1	0.173821					
2						

Without 0.5 continuity correction:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X} \leq 312) \\
& Z=\frac{312-400 \cdot 0.80}{\sqrt{400 \cdot 0.80 \cdot 0.20}}=-1.00 \\
& \mathrm{P}(\mathrm{Z}<-1.00)=0.1587
\end{aligned}
$$

With 0.5 continuity correction:

$$
\begin{aligned}
& P(X \leq 312)=P(X \leq 312.5) \\
& Z=\frac{312.5-400 \cdot 0.80}{\sqrt{400 \cdot 0.80 \cdot 0.20}}=-0.9375 \\
& P(Z<-0.94)=0.1736 . \\
& P(Z<-0.9375)=0.17425 .
\end{aligned}
$$

