4.2 Covariance and Correlation Coefficient

Covariance of X and Y

$$
\sigma_{X Y}=\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E(X Y)-\mu_{X} \mu_{Y}
$$

(a) $\operatorname{Cov}(\mathrm{X}, \mathrm{X})=\operatorname{Var}(\mathrm{X})$;
(b) $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\operatorname{Cov}(\mathrm{Y}, \mathrm{X})$;
(c) $\quad \operatorname{Cov}(a \mathrm{X}+b, \mathrm{Y})=a \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$;
(d) $\operatorname{Cov}(\mathrm{X}+\mathrm{Y}, \mathrm{W})=\operatorname{Cov}(\mathrm{X}, \mathrm{W})+\operatorname{Cov}(\mathrm{Y}, \mathrm{W})$.

$$
\begin{aligned}
& \operatorname{Cov}(a \mathrm{X}+b \mathrm{Y}, c \mathrm{X}+d \mathrm{Y}) \\
& \quad=a c \operatorname{Var}(\mathrm{X})+(a d+b c) \operatorname{Cov}(\mathrm{X}, \mathrm{Y})+b d \operatorname{Var}(\mathrm{Y}) .
\end{aligned}
$$

$\operatorname{Var}(a \mathrm{X}+b \mathrm{Y})=\operatorname{Cov}(a \mathrm{X}+b \mathrm{Y}, a \mathrm{X}+b \mathrm{Y})$ $=a^{2} \operatorname{Var}(\mathrm{X})+2 a b \operatorname{Cov}(\mathrm{X}, \mathrm{Y})+b^{2} \operatorname{Var}(\mathrm{Y})$.
0. Find in terms of $\sigma_{\mathrm{X}}^{2}, \sigma_{\mathrm{Y}}^{2}$, and σ_{XY} :
a) $\operatorname{Cov}(2 \mathrm{X}+3 \mathrm{Y}, \mathrm{X}-2 \mathrm{Y})$,
b) $\quad \operatorname{Var}(2 \mathrm{X}+3 \mathrm{Y})$,
c) $\quad \operatorname{Var}(\mathrm{X}-2 \mathrm{Y})$.

Correlation coefficient of X and Y

$$
\rho_{\mathrm{XY}}=\frac{\sigma_{\mathrm{XY}}}{\sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}}=\frac{\operatorname{Cov}(\mathrm{X}, \mathrm{Y})}{\sqrt{\operatorname{Var}(\mathrm{X})} \cdot \sqrt{\operatorname{Var}(\mathrm{Y})}}=\mathrm{E}\left[\left(\frac{\mathrm{X}-\mu_{\mathrm{X}}}{\sigma_{\mathrm{X}}}\right)\left(\frac{\mathrm{Y}-\mu_{\mathrm{Y}}}{\sigma_{\mathrm{Y}}}\right)\right]
$$

(a) $\quad-1 \leq \rho_{X Y} \leq 1$;
(b) $\quad \rho_{\mathrm{XY}}$ is either +1 or -1 if and only if X and Y are linear functions of one another.

If random variables X and Y are independent, then

$$
\begin{array}{ll}
& \mathrm{E}(g(\mathrm{X}) \cdot h(\mathrm{Y}))=\mathrm{E}(g(\mathrm{X})) \cdot \mathrm{E}(h(\mathrm{Y})) . \\
\Rightarrow \quad & \operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\sigma_{\mathrm{XY}}=0, \quad \operatorname{Corr}(\mathrm{X}, \mathrm{Y})=\rho_{\mathrm{XY}}=0 .
\end{array}
$$

1. Consider the following joint probability distribution $p(x, y)$ of two random variables X and Y :

	y			
x	0	1	2	$p_{\mathrm{X}}(x)$
1	0.15	0.10	0	0.25
2	0.25	0.30	0.20	0.75
$p_{\mathrm{Y}}(y)$	0.40	0.40	0.20	1.00

Recall:

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=1.75, \\
& \mathrm{E}(\mathrm{Y})=0.8, \\
& \mathrm{E}(\mathrm{XY})=1.5 .
\end{aligned}
$$

Find $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\sigma_{\mathrm{XY}}$ and $\operatorname{Corr}(\mathrm{X}, \mathrm{Y})=\rho_{\mathrm{XY}}$.
2. Let the joint probability density function for (X, Y) be

$$
f(x, y)=\left\{\begin{array}{cc}
60 x^{2} y & 0 \leq x \leq 1, \\
0 & 0 \leq y \leq 1, x+y \leq 1 \\
\text { otherwise }
\end{array}\right.
$$

Find $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\sigma_{\mathrm{XY}}$ and $\operatorname{Corr}(\mathrm{X}, \mathrm{Y})=\rho_{\mathrm{XY}}$.
Recall: $\quad f_{\mathrm{X}}(x)=30 x^{2}(1-x)^{2}, \quad 0<x<1, \quad \mathrm{E}(\mathrm{X})=\frac{1}{2}$,

$$
f_{\mathrm{Y}}(y)=20 y(1-y)^{3}, \quad 0<y<1, \quad \mathrm{E}(\mathrm{Y})=\frac{1}{3}, \quad \mathrm{E}(\mathrm{X} Y)=\frac{1}{7} .
$$

3. Let the joint probability density function for (X, Y) be

$$
f(x, y)=\left\{\begin{array}{cc}
x+y & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\sigma_{\mathrm{XY}}$ and $\operatorname{Corr}(\mathrm{X}, \mathrm{Y})=\rho_{\mathrm{XY}}$.
Recall: $\quad f_{\mathrm{X}}(x)=x+\frac{1}{2}, 0<x<1 . \quad f_{\mathrm{Y}}(y)=y+\frac{1}{2}, 0<y<1$.
4. Let the joint probability density function for (X, Y) be

$$
f(x, y)=\left\{\begin{array}{cc}
12 x(1-x) e^{-2 y} & 0 \leq x \leq 1, y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\sigma_{\mathrm{XY}}$ and $\operatorname{Corr}(\mathrm{X}, \mathrm{Y})=\rho_{\mathrm{XY}}$.
Recall:

$$
f_{\mathrm{X}}(x)=6 x(1-x), \quad 0<x<1
$$

$$
f_{\mathrm{Y}}(y)=2 e^{-2 y}, \quad y>0
$$

