Independent Random Variables

1. Consider the following joint probability distribution $p(x, y)$ of two random variables X and Y :

$x \quad \backslash \quad y$	0	1	2		
1	0.15	0.10	0	0.25	
2	0.25	0.30	0.20	0.75	
		0.40	0.40	0.20	

Recall: $\quad A$ and B are independent if and only if $P(A \cap B)=P(A) \cdot P(B)$.
a) Are events $\{\mathrm{X}=1\}$ and $\{\mathrm{Y}=1\}$ independent?

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=1 \cap \mathrm{Y}=1)=p(1,1)=0.10=0.25 \times 0.40=\mathrm{P}(\mathrm{X}=1) \times \mathrm{P}(\mathrm{Y}=1) \\
& \{\mathrm{X}=1\} \text { and }\{\mathrm{Y}=1\} \text { are independent. }
\end{aligned}
$$

Def Random variables X and Y are independent if and only if
discrete

$$
p(x, y)=p_{\mathrm{X}}(x) \cdot p_{\mathrm{Y}}(y) \quad \text { for all } x, y
$$

continuous

$$
f(x, y)=f_{\mathrm{X}}(x) \cdot f_{\mathrm{Y}}(y) \quad \text { for all } x, y
$$

$\mathrm{F}(x, y)=\mathrm{P}(\mathrm{X} \leq x, \mathrm{Y} \leq y)$.
$f(x, y)=\partial^{2} \mathrm{~F}(x, y) / \partial x \partial y$.
Def Random variables X and Y are independent if and only if

$$
\mathrm{F}(x, y)=\mathrm{F}_{\mathrm{X}}(x) \cdot \mathrm{F}_{\mathrm{Y}}(y) \quad \text { for all } x, y .
$$

b) Are random variables X and Y independent?

$$
p(1,0)=0.15 \neq 0.25 \times 0.40=p_{\mathrm{X}}(1) \times p_{\mathrm{Y}}(0)
$$

X and Y are NOT independent.
2. Let the joint probability density function for (X, Y) be

$$
f(x, y)=\left\{\begin{array}{cc}
60 x^{2} y & 0 \leq x \leq 1, \\
0 & 0 \leq y \leq 1, x+y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Recall: $\quad f_{\mathrm{X}}(x)=30 x^{2}(1-x)^{2}, \quad 0<x<1$,

$$
f_{\mathrm{Y}}(y)=20 y(1-y)^{3}, \quad 0<y<1
$$

Are random variables X and Y independent?

The support of (X, Y) is not a rectangle.
X and Y are NOT independent.
3. Let the joint probability density function for (X,Y) be

$$
f(x, y)=\left\{\begin{array}{cc}
x+y & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Are X and Y independent?

$$
\begin{aligned}
f_{1}(x) & =\int_{0}^{1}(x+y) d y \\
& =\left[x y+\frac{1}{2} y^{2}\right]_{0}^{1}=x+\frac{1}{2}, \quad 0 \leq x \leq 1 \\
f_{2}(y) & =\int_{0}^{1}(x+y) d x=y+\frac{1}{2}, \quad 0 \leq y \leq 1 \\
f(x, y) & =x+y \neq\left(x+\frac{1}{2}\right)\left(y+\frac{1}{2}\right)=f_{1}(x) f_{2}(y)
\end{aligned}
$$

4. Let the joint probability density function for (X, Y) be

$$
f(x, y)=\left\{\begin{array}{cc}
12 x(1-x) e^{-2 y} & 0 \leq x \leq 1, y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Are X and Y independent?

$$
\begin{aligned}
& f_{\mathrm{X}}(x)=\int_{0}^{\infty} 12 x(1-x) e^{-2 y} d y=6 x(1-x), \quad 0<x<1 \\
& f_{\mathrm{Y}}(y)=\int_{0}^{1} 12 x(1-x) e^{-2 y} d x=2 e^{-2 y}, \quad y>0
\end{aligned}
$$

Since $f(x, y)=f_{\mathrm{X}}(x) \cdot f_{\mathrm{Y}}(y)$ for all x, y, X and Y are independent.

If random variables X and Y are independent, then

$$
\mathrm{E}(g(\mathrm{X}) \cdot h(\mathrm{Y}))=\mathrm{E}(g(\mathrm{X})) \cdot \mathrm{E}(h(\mathrm{Y}))
$$

5. Suppose the probability density functions of T_{1} and T_{2} are

$$
f_{\mathrm{T}_{1}}(x)=\alpha e^{-\alpha x}, \quad x>0, \quad f_{\mathrm{T}_{2}}(y)=\beta e^{-\beta y}, \quad y>0
$$

respectively. Suppose T_{1} and T_{2} are independent. Find $\mathrm{P}\left(2 \mathrm{~T}_{1}>\mathrm{T}_{2}\right)$.

$$
\begin{aligned}
\mathrm{P}\left(2 \mathrm{~T}_{1}>\mathrm{T}_{2}\right) & =\int_{0}^{\infty}\left(\int_{y / 2}^{\infty}\left(\alpha \beta e^{-\alpha x-\beta y}\right) d x\right) d y=\int_{0}^{\infty} \beta e^{-\beta y}\left(\int_{y / 2}^{\infty}\left(\alpha e^{-\alpha x}\right) d x\right) d y \\
& =\int_{0}^{\infty} \beta e^{-\beta y}\left(e^{-\alpha y / 2}\right) d y=\int_{0}^{\infty} \beta e^{-(\alpha / 2+\beta) y} d y=\frac{2 \boldsymbol{\beta}}{\boldsymbol{\alpha}+2 \boldsymbol{\beta}} .
\end{aligned}
$$

6. Let X and Y be two independent random variables, X has a Geometric distribution with the probability of "success" $p=1 / 3, \mathrm{Y}$ has a Poisson distribution with mean 3 . That is,

$$
\begin{aligned}
& p_{\mathrm{X}}(x)=\left(\frac{1}{3}\right) \cdot\left(\frac{2}{3}\right)^{x-1}, \quad x=1,2,3, \ldots, \\
& p_{\mathrm{Y}}(y)=\frac{3^{y} e^{-3}}{y!}, \quad y=0,1,2,3, \ldots
\end{aligned}
$$

a) Find $\mathrm{P}(\mathrm{X}=\mathrm{Y})$.

$$
\begin{aligned}
\mathrm{P}(\mathrm{X}= & \mathrm{Y})=\sum_{k=1}^{\infty} p_{\mathrm{X}}(k) \cdot p_{\mathrm{Y}}(k)=\sum_{k=1}^{\infty}\left(\frac{1}{3}\right) \cdot\left(\frac{2}{3}\right)^{k-1} \cdot \frac{3^{k} e^{-3}}{k!} \\
& =e^{-3} \cdot \sum_{k=1}^{\infty} \frac{2^{k-1}}{k!}=\frac{e^{-3}}{2} \cdot\left[\sum_{k=0}^{\infty} \frac{2^{k}}{k!}-1\right]=\frac{e^{-3}}{2} \cdot\left[e^{2}-1\right] \\
& =\frac{e^{-1}-e^{-3}}{2} \approx 0.159 .
\end{aligned}
$$

b) Find $\mathrm{P}(\mathrm{X}=2 \mathrm{Y})$.

$$
\begin{aligned}
\mathrm{P}(\mathrm{X}= & 2 \mathrm{Y})=\sum_{k=1}^{\infty} p_{\mathrm{X}}(2 k) \cdot p_{\mathrm{Y}}(k)=\sum_{k=1}^{\infty}\left(\frac{1}{3}\right) \cdot\left(\frac{2}{3}\right)^{2 k-1} \cdot \frac{3^{k} e^{-3}}{k!} \\
& =\frac{e^{-3}}{2} \cdot \sum_{k=1}^{\infty}\left(\frac{4}{3}\right)^{k} \cdot \frac{1}{k!}=\frac{e^{-3}}{2} \cdot\left[e^{4 / 3}-1\right] \approx 0.069544
\end{aligned}
$$

For fun:
c) $\mathrm{P}(\mathrm{X}>\mathrm{Y})=\sum_{y=0}^{\infty} \sum_{x=y+1}^{\infty}\left(\frac{1}{3}\right) \cdot\left(\frac{2}{3}\right)^{x-1} \cdot \frac{3^{y} e^{-3}}{y!}=\sum_{y=0}^{\infty}\left(\frac{2}{3}\right)^{y} \cdot \frac{3^{y} e^{-3}}{y!}$

$$
=e^{-3} \cdot \sum_{y=0}^{\infty} \frac{2^{y}}{y!}=e^{-1}
$$

