Independent Random Variables

1. Consider the following joint probability distribution $p(x, y)$ of two random variables X and Y :

| $x \quad \backslash \quad y$ | 0 | 1 | 2 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.15 | 0.10 | 0 | 0.25 |
| 2 | 0.25 | 0.30 | 0.20 | 0.75 |
| | 0.40 | 0.40 | 0.20 | |

Recall: $\quad A$ and B are independent if and only if $P(A \cap B)=P(A) \cdot P(B)$.
a) Are events $\{\mathrm{X}=1\}$ and $\{\mathrm{Y}=1\}$ independent?

Def \quad Random variables X and Y are independent if and only if
discrete
continuous

$$
p(x, y)=p_{\mathrm{X}}(x) \cdot p_{\mathrm{Y}}(y) \quad \text { for all } x, y .
$$

$$
f(x, y)=f_{\mathrm{X}}(x) \cdot f_{\mathrm{Y}}(y) \quad \text { for all } x, y
$$

$\mathrm{F}(x, y)=\mathrm{P}(\mathrm{X} \leq x, \mathrm{Y} \leq y)$.
$f(x, y)=\partial^{2} \mathrm{~F}(x, y) / \partial x \partial y$.

Def Random variables X and Y are independent if and only if

$$
\mathrm{F}(x, y)=\mathrm{F}_{\mathrm{X}}(x) \cdot \mathrm{F}_{\mathrm{Y}}(y) \quad \text { for all } x, y .
$$

b) Are random variables X and Y independent?
2. Let the joint probability density function for (X, Y) be

$$
f(x, y)=\left\{\begin{array}{cc}
60 x^{2} y & 0 \leq x \leq 1, \\
0 & 0 \leq y \leq 1, x+y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Recall: $\quad f_{\mathrm{X}}(x)=30 x^{2}(1-x)^{2}, \quad 0<x<1$,

$$
f_{\mathrm{Y}}(y)=20 y(1-y)^{3}, \quad 0<y<1 .
$$

Are random variables X and Y independent?
3. Let the joint probability density function for (X, Y) be

$$
f(x, y)=\left\{\begin{array}{cc}
x+y & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Are X and Y independent?
4. Let the joint probability density function for (X, Y) be

$$
f(x, y)=\left\{\begin{array}{cc}
12 x(1-x) e^{-2 y} & 0 \leq x \leq 1, y \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Are X and Y independent?

If random variables X and Y are independent, then

$$
\mathrm{E}(g(\mathrm{X}) \cdot h(\mathrm{Y}))=\mathrm{E}(g(\mathrm{X})) \cdot \mathrm{E}(h(\mathrm{Y}))
$$

5. Suppose the probability density functions of T_{1} and T_{2} are

$$
f_{\mathrm{T}_{1}}(x)=\alpha e^{-\alpha x}, \quad x>0, \quad f_{\mathrm{T}_{2}}(y)=\beta e^{-\beta y}, \quad y>0
$$

respectively. Suppose T_{1} and T_{2} are independent. Find $P\left(2 T_{1}>T_{2}\right)$.
6. Let X and Y be two independent random variables, X has a Geometric distribution with the probability of "success" $p=1 / 3, Y$ has a Poisson distribution with mean 3 . That is,

$$
\begin{aligned}
& p_{\mathrm{X}}(x)=\left(\frac{1}{3}\right) \cdot\left(\frac{2}{3}\right)^{x-1}, \quad x=1,2,3, \ldots, \\
& p_{\mathrm{Y}}(y)=\frac{3^{y} e^{-3}}{y!}, \quad y=0,1,2,3, \ldots
\end{aligned}
$$

a) Find $\mathrm{P}(\mathrm{X}=\mathrm{Y})$.
b) Find $\mathrm{P}(\mathrm{X}=2 \mathrm{Y})$.

