Multivariate Distributions

Let X and Y be two discrete random variables. The joint probability mass function $p(x, y)$ is defined for each pair of numbers (x, y) by

$$
p(x, y)=\mathrm{P}(\mathrm{X}=x \text { and } \mathrm{Y}=y)
$$

Let A be any set consisting of pairs of (x, y) values. Then

$$
\mathrm{P}((\mathrm{X}, \mathrm{Y}) \in A)=\sum_{(x, y) \in A} \sum_{\mathrm{A}} p(x, y) .
$$

Let X and Y be two continuous random variables. Then $f(x, y)$ is the joint probability density function for X and Y if for any two-dimensional set A

$$
\mathrm{P}((\mathrm{X}, \mathrm{Y}) \in A)=\iint_{A} f(x, y) d x d y
$$

1. Consider the following joint probability distribution $p(x, y)$ of two random variables X and Y :

| $x \quad \backslash \quad y$ | 0 | 1 | 2 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.15 | 0.10 | 0 | |
| 2 | 0.25 | 0.30 | 0.20 | |
| | | | | |

a) Find $P(X+Y=2)$.
b) Find $\mathrm{P}(\mathrm{X}>\mathrm{Y})$.

The marginal probability mass functions of X and of Y are given by

$$
p_{\mathrm{X}}(x)=\sum_{\text {all } y} p(x, y), \quad p_{\mathrm{Y}}(y)=\sum_{\text {all } x} p(x, y) .
$$

The marginal probability density functions of X and of Y are given by

$$
f_{\mathrm{X}}(x)=\int_{-\infty}^{\infty} f(x, y) d y, \quad f_{\mathrm{Y}}(y)=\int_{-\infty}^{\infty} f(x, y) d x
$$

c) Find the (marginal) probability distributions $p_{\mathrm{X}}(x)$ of X and $p_{Y}(y)$ of Y.

x	$p_{\mathrm{X}}(x)$

y	$p_{\mathrm{Y}}(y)$

If $p(x, y)$ is the joint probability mass function of (X, Y) OR $f(x, y)$ is the joint probability density function of (X, Y), then
discrete
continuous
$\mathrm{E}(g(\mathrm{X}, \mathrm{Y}))=\sum_{\text {all } x \text { all } y} g(x, y) \cdot p(x, y) \quad \mathrm{E}(g(\mathrm{X}, \mathrm{Y}))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) \cdot f(x, y) d x d y$
d) Find $E(X), E(Y), E(X+Y), E(X \cdot Y)$.
2. Alexis Nuts, Inc. markets cans of deluxe mixed nuts containing almonds, cashews, and peanuts. Suppose the net weight of each can is exactly 1 lb , but the weight contribution of each type of nut is random. Because the three weights sum to 1, a joint probability model for any two gives all necessary information about the weight of the third type. Let $\mathrm{X}=$ the weight of almonds in a
 selected can and $Y=$ the weight of cashews.

Then the region of positive density is $\mathrm{D}=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1, x+y \leq 1\}$.
Let the joint probability density function for (X, Y) be

$$
f(x, y)=\left\{\begin{array}{cc}
60 x^{2} y & 0 \leq x \leq 1, \\
0 & 0 \leq y \leq 1, x+y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Verify that $f(x, y)$ is a legitimate probability density function.
b) Find the probability that the two types of nuts together make up less than 50\% of the can. That is, find the probability $\mathrm{P}(\mathrm{X}+\mathrm{Y}<0.50)$. (Find the probability that peanuts make up over 50% of the can.)
c) Find the probability that there are more almonds than cashews in a can. That is, find the probability $\mathrm{P}(\mathrm{X}>\mathrm{Y})$.
d) Find the probability that there are at least twice as many cashews as there are almonds. That is, find the probability $\mathrm{P}(2 \mathrm{X} \leq \mathrm{Y})$.
e) Find the marginal probability density function for X.
f) Find the marginal probability density function for Y.
g) Find $\mathrm{E}(\mathrm{X}), \mathrm{E}(\mathrm{Y}), \mathrm{E}(\mathrm{X}+\mathrm{Y}), \mathrm{E}(\mathrm{X} \cdot \mathrm{Y})$.
h) If 1 lb of almonds costs the company $\$ 1.00,1 \mathrm{lb}$ of cashews costs $\$ 1.50$, and 1 lb of peanuts costs $\$ 0.60$, what is the expected total cost of the content of a can?

