STAT 400
 UIUC

Examples for 3.3

1. At Initech , the salaries of the employees are normally distributed with mean $\mu=\$ 36,000$ and standard deviation $\sigma=\$ 5,000$.
a) Mr. Smith is paid $\$ 42,000$. What proportion of the employees of Initech are paid less that Mr. Smith?

$$
\mathrm{P}(\mathrm{X}<42,000)=\mathrm{P}\left(\mathrm{Z}<\frac{42,000-36,000}{5,000}\right)=\mathrm{P}(\mathrm{Z}<1.20)=\mathbf{0 . 8 8 4 9} .
$$

b) What proportion of the employees have their salaries over $\$ 40,000$?

$$
\mathrm{P}(\mathrm{X}>40,000)=\mathrm{P}\left(\mathrm{Z}>\frac{40,000-36,000}{5,000}\right)=\mathrm{P}(\mathrm{Z}>0.80)=1-0.7881=\mathbf{0 . 2 1 1 9} .
$$

c) Suppose 10 Initech employees are randomly and independently selected. What is the probability that 3 of them have their salaries over $\$ 40,000$?

Let $\mathrm{Y}=$ number of employees (out of 10) who have salaries over $\$ 40,000$. Then Y has Binomial distribution, $n=10, p=\mathbf{0 . 2 1 1 9}$ (see (b)).

$$
\mathrm{P}(\mathrm{Y}=3)={ }_{10} \mathrm{C}_{3} \cdot(0.2119)^{3} \cdot(0.7881)^{7}=\mathbf{0 . 2 1 5 6} .
$$

d) What proportion of the employees have their salaries between $\$ 30,000$ and $\$ 40,000$?

$$
\begin{aligned}
\mathrm{P}(30,000<\mathrm{X}<40,000) & =\mathrm{P}\left(\frac{30,000-36,000}{5,000}<\mathrm{Z}<\frac{40,000-36,000}{5,000}\right) \\
& =\mathrm{P}(-1.2<\mathrm{Z}<0.80)=0.7881-0.1151=\mathbf{0 . 6 7 3 0} .
\end{aligned}
$$

e) Mrs. Jones claims that her salary is high enough to just put her among the highest paid 15% of all employees working at Initech. Find her salary.

Need $x=$? such that $\mathrm{P}(\mathrm{X}>x)=0.15$. (area to the right is 0.15)
First, need $Z=$? such that $\mathrm{P}(\mathrm{Z}>\mathrm{Z})=0.15$.
$z=1.04$.
$\mathrm{X}=\mu+\sigma \mathrm{Z} . \quad x=36,000+5,000 \times 1.04=\mathbf{\$ 4 1 , 2 0 0}$.
f) Ms. Green claims that her salary is so low that 90% of the employees make more than she does. Find her salary.

Need $x=$? such that $\mathrm{P}(\mathrm{X}>x)=0.90$. (area to the right is 0.90)
First, need $z=$? such that $P(Z>z)=0.90$.
$z=-1.28$.
$\mathrm{X}=\mu+\sigma \mathrm{Z} . \quad X=36,000+5,000 \times(-1.28)=\mathbf{\$ 2 9 , 6 0 0}$.
2. Suppose that the lifetime of Outlast batteries is normally distributed with mean $\mu=240$ hours and unknown standard deviation. Suppose also that 20% of the batteries last less than 219 hours. Find the standard deviation of the distribution of the lifetimes.

Need $\sigma=$?
Know $\mathrm{P}(\mathrm{X}<219)=0.20$.
First, need $\mathrm{Z}=$? such that $\mathrm{P}(\mathrm{Z}<\mathrm{z})=0.20$.
$z=-0.84$.

$$
\begin{array}{ll}
\mathrm{X}=\mu+\sigma \mathrm{Z} . & 219=240+\sigma \times(-0.84) . \\
& -21=\sigma \times(-0.84) . \\
& \sigma=\mathbf{2 5} \text { hours. }
\end{array}
$$

Let X be normally distributed with mean μ and standard deviation σ. Then the moment-generating function of X is

$$
\begin{gathered}
\mathrm{M}_{\mathrm{X}}(t)=e^{\mu t+\sigma^{2} t^{2} / 2} . \\
\mathrm{M}_{\mathrm{X}}(t)=\mathrm{E}\left(e^{t \mathrm{X}}\right)=\int_{-\infty}^{\infty} e^{t x} \cdot \frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x \\
=\int_{-\infty}^{\infty} e^{t(\mu+\sigma z)} \cdot \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z=e^{\mu t+\sigma^{2} t^{2} / 2} \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(z-\sigma t)^{2} / 2} d z \\
=e^{\mu t+\sigma^{2} t^{2} / 2}, \\
\text { since } \frac{1}{\sqrt{2 \pi}} e^{-(z-\sigma t)^{2} / 2} \text { is the probability density function } \\
\text { of a } \mathrm{N}(\sigma t, 1) \text { random variable. }
\end{gathered}
$$

Let $\mathrm{Y}=a \mathrm{X}+b$. Then $\mathrm{M}_{\mathrm{Y}}(t)=e^{b t} \mathrm{M}_{\mathrm{X}}(a t)$.
Therefore, Y is normally distributed with mean $a \mu+b$ and variance $a^{2} \sigma^{2}$ (standard deviation $|a| \sigma$).

1. (continued)
g) All Initech employees receive a memo instructing them to put away 4% of their salaries plus $\$ 100$ per month ($\$ 1,200$ per year) in a special savings account to supplement Social Security. What proportion of the employees would put away more than $\$ 3,000$ per year?
$\mathrm{Y}=0.04 \mathrm{X}+1,200 . \quad \mathrm{P}(\mathrm{Y}>3,000)=$?
$\mathrm{Y}>3,000 \quad \Leftrightarrow \quad \mathrm{X}>45,000$.
$\mathrm{P}(\mathrm{X}>45,000)=\mathrm{P}\left(\mathrm{Z}>\frac{45,000-36,000}{5,000}\right)=\mathrm{P}(\mathrm{Z}>1.80)=1-0.9641=\mathbf{0 . 0 3 5 9}$.

OR

$$
\begin{aligned}
& \mu_{\mathrm{Y}}=0.04 \times 36,000+1,200=\$ 2,640, \quad \sigma_{Y}=0.04 \times 5,000=\$ 200 . \\
& \mathrm{P}(\mathrm{Y}>3,000)=\mathrm{P}\left(\mathrm{Z}>\frac{3,000-2,640}{200}\right)=\mathrm{P}(\mathrm{Z}>1.80)=1-0.9641=\mathbf{0 . 0 3 5 9} .
\end{aligned}
$$

3. Suppose the average daily temperature [in degrees Fahrenheit] in June in Anytown is a random variable T with mean $\mu_{\mathrm{T}}=85$ and standard deviation $\sigma_{\mathrm{T}}=7$. The daily air conditioning cost Q , in dollars, for Anytown State University, is related to T by

$$
\mathrm{Q}=120 \mathrm{~T}+750 .
$$

Suppose that T is a normal random variable. Compute the probability that the daily air conditioning cost on a typical June day for the university will exceed \$12,210.

Q has Normal distribution.
$\mu_{\mathrm{Q}}=120 \mu_{\mathrm{T}}+750=120 \cdot 85+750=\$ 10,950$.
$\sigma_{\mathrm{Q}}^{2}=(120)^{2} \cdot \sigma_{\mathrm{T}}^{2}=(120)^{2} \cdot 7^{2}=840^{2} . \quad \sigma_{\mathrm{Q}}=\$ 840$.
$\mathrm{P}(\mathrm{Q}>12,210)=\mathrm{P}\left(\mathrm{Z}>\frac{12,210-10,950}{840}\right)=\mathrm{P}(\mathrm{Z}>1.50)=1-\Phi(1.50)=1-0.9332=\mathbf{0 . 0 6 6 8}$.

OR

$$
12,210=120 \mathrm{~T}+750 . \quad \Leftrightarrow \quad \mathrm{T}=95.5 .
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{Q}>12,210) & =\mathrm{P}(\mathrm{~T}>95.5) \\
& =\mathrm{P}\left(\mathrm{Z}>\frac{95.5-85}{7}\right) \\
& =\mathrm{P}(\mathrm{Z}>1.50) \\
& =1-\Phi(1.50) \\
& =1-0.9332 \\
& =\mathbf{0 . 0 6 6 8} .
\end{aligned}
$$

4. Consider a random variable X with the moment-generating function

$$
\mathrm{M}_{\mathrm{X}}(t)=e^{3 t+8 t^{2}}=\exp \left(3 t+8 t^{2}\right)
$$

a) Find $\mathrm{P}(\mathrm{X}>0)$.

Normal distribution: $\quad \mathrm{M}_{\mathrm{X}}(t)=e^{\mu t+\sigma^{2} t^{2} / 2}$.
$\Rightarrow \quad \mathrm{X}$ has a Normal distribution with $\mu=3$ and $\sigma^{2} / 2=8$.
$\Rightarrow \quad \mathrm{E}(\mathrm{X})=\mu=3, \quad \operatorname{Var}(\mathrm{X})=\sigma^{2}=16 . \quad \sigma=4$.
$\mathrm{P}(\mathrm{X}>0)=\mathrm{P}\left(\mathrm{Z}>\frac{0-3}{4}\right)=\mathrm{P}(\mathrm{Z}>-0.75)=1-\Phi(-0.75)=1-0.2266=\mathbf{0 . 7 7 3 4}$.
a) Find $\mathrm{P}(-1<\mathrm{X}<9)$.

$$
\begin{aligned}
\mathrm{P}(-1<\mathrm{X}<9) & =\mathrm{P}\left(\frac{-1-3}{4}<\mathrm{Z}<\frac{9-3}{4}\right)=\mathrm{P}(-1.00<\mathrm{Z}<1.50) \\
& =\Phi(1.50)-\Phi(-1.00)=0.9332-0.1587=\mathbf{0 . 7 7 4 5} .
\end{aligned}
$$

EXCEL:

$=\operatorname{NORMSDIST}(z)$	gives	$\mathrm{P}(\mathrm{Z} \leq \mathrm{Z})=\Phi(z)$
$=\operatorname{NORMSINV}(p)$	gives	Z such that $\mathrm{P}(\mathrm{Z} \leq z)=p$
$=\operatorname{NORMDIST}(x, \mu, \sigma, 1)$	gives	$\mathrm{P}(\mathrm{X} \leq x), \quad$ where X is $\mathrm{N}\left(\mu, \sigma^{2}\right)$
$=\operatorname{NORMDIST}(x, \mu, \sigma, 0)$	gives	$f(x)$, p.d.f. of $\mathrm{N}\left(\mu, \sigma^{2}\right)$
$=\operatorname{NORMINV}(p, \mu, \sigma)$	gives	
		where X such that $\mathrm{P}(\mathrm{X} \leq x)=p$,

5.* Show that the odd moments of $N\left(0, \sigma^{2}\right)$ are zero and the even moments are

$$
\mu_{2 n}=\frac{(2 n)!\sigma^{2 n}}{2^{n}(n)!}
$$

Taylor Formula:

$$
\mathrm{M}_{\mathrm{X}}(t)=\sum_{r=0}^{\infty} \frac{t^{r}}{r!} \mathrm{M}^{(r)}(0)=\sum_{r=0}^{\infty} \frac{t^{r}}{r!} \mathrm{E}\left(\mathrm{X}^{r}\right)=\sum_{r=0}^{\infty} \frac{t^{r}}{r!} \mu_{r} .
$$

Since X is $N\left(0, \sigma^{2}\right)$,

$$
\mathrm{M}_{\mathrm{X}}(t)=\exp \left\{\frac{\sigma^{2} t^{2}}{2}\right\}=\sum_{n=0}^{\infty} \frac{\sigma^{2 n} t^{2 n}}{2^{n} n!}
$$

Therefore,

$$
\begin{array}{ll}
\text { if } r \text { is odd, } & \mu_{r}=0, \\
\text { if } r=2 n \text { is even, } & \frac{\sigma^{2 n}}{2^{n} n!}=\frac{1}{r!} \mu_{r} \quad \Rightarrow \quad \mu_{2 n}=\frac{(2 n)!\sigma^{2 n}}{2^{n}(n)!} .
\end{array}
$$

OR

Def

$$
\begin{aligned}
& \Gamma(x)=\int_{0}^{\infty} u^{x-1} e^{-u} d u, \quad x>0 \\
& \Gamma(x)=(x-1) \Gamma(x-1) \\
& \Gamma(n)=(n-1)!\quad \text { if } n \text { is an integer } \\
& \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{2 n}=\int_{-\infty}^{\infty} x^{2 n} \frac{1}{\sqrt{2 \pi} \sigma} e^{-x^{2} / 2 \sigma^{2}} d x=\int_{0}^{\infty} x^{2 n} \frac{2}{\sqrt{2 \pi} \sigma} e^{-x^{2} / 2 \sigma^{2}} d x=\ldots \\
& u=\frac{x^{2}}{2 \sigma^{2}} d u=\frac{x d x}{\sigma^{2}} \quad d x=\frac{d u \sigma}{\sqrt{2 u}} \\
& \ldots=\int_{0}^{\infty} 2^{n} \sigma^{2 n} \frac{1}{\sqrt{\pi}} u^{n-1 / 2} e^{-u} d u=2^{n} \sigma^{2 n} \frac{1}{\sqrt{\pi}} \Gamma\left(n+\frac{1}{2}\right) . \\
& \Gamma\left(n+\frac{1}{2}\right)=\left(n-\frac{1}{2}\right) \cdot\left(n-\frac{3}{2}\right) \cdot\left(n-\frac{5}{2}\right) \cdot \ldots \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi} \\
&=\frac{1}{2^{n}} \cdot(2 n-1) \cdot(2 n-3) \cdot(2 n-5) \cdot \ldots \cdot 3 \cdot 1 \cdot \sqrt{\pi} \\
&=\frac{1}{2^{n}} \cdot \frac{(2 n) \cdot(2 n-2) \cdot(2 n-4) \cdot \ldots \cdot 4 \cdot 2}{(2 n)} \\
&=\frac{1}{2^{n}} \cdot \frac{(2 n)!}{2^{n} \cdot(n)!} \cdot \sqrt{\pi} \\
& \Rightarrow \quad \mu_{2 n}^{2 n}=\frac{(2 n)!\sigma^{2 n}}{2^{n}(n)!}
\end{aligned}
$$

