Continuous Random Variables.

The probabilities associated with a continuous random variable X are determined by the probability density function of the random variable. The function, denoted $f(x)$, must satisfy the following properties:

1. $f(x) \geq 0$ for all x.
2. The total area under the entire curve of $f(x)$ is equal to 1.00 .

Then the probability that X will be between two numbers a and b is equal to the area under $f(x)$ between a and b .

For any point C,

$$
\mathrm{P}(\mathrm{X}=\mathrm{c})=0 .
$$

Therefore,

$$
\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{a} \leq \mathrm{X}<\mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b}) .
$$

Expected value (mean, average): $\quad \mu_{\mathrm{X}}=\int_{-\infty}^{\infty} x \cdot f(x) d x$.

Variance:

$$
\begin{aligned}
& \sigma_{\mathrm{X}}^{2}=\mathrm{E}\left[\left(\mathrm{X}-\mu_{\mathrm{X}}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(x-\mu_{\mathrm{X}}\right)^{2} \cdot f(x) d x \\
& \sigma_{\mathrm{X}}^{2}=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}=\left[\int_{-\infty}^{\infty} x^{2} \cdot f(x) d x\right]-\left(\mu_{\mathrm{X}}\right)^{2}
\end{aligned}
$$

Moment Generating Function: $\quad \mathrm{M}_{\mathrm{X}}(t)=\mathrm{E}\left(e^{t \mathrm{X}}\right)=\int_{-\infty}^{\infty} e^{t x} \cdot f(x) d x$.

1. Let X be a continuous random variable with the probability density function

$$
\begin{array}{ll}
f(x)=k \cdot \sqrt{x}, & 0 \leq x \leq 4 \\
f(x)=0, & \text { otherwise }
\end{array}
$$

a) What must the value of k be so that $f(x)$ is a probability density function?
b) Find the cumulative distribution function of $\mathrm{X}, \mathrm{F}_{\mathrm{X}}(x)=\mathrm{P}(\mathrm{X} \leq x)$.
c) Find the probability $\mathrm{P}(1 \leq \mathrm{X} \leq 2)$.
d) Find the median of the distribution of X. That is, find m such that $\mathrm{P}(\mathrm{X} \leq m)=\mathrm{P}(\mathrm{X} \geq m)=1 / 2$.
e) Find the 30th percentile of the distribution of X . That is, find a such that $\mathrm{P}(\mathrm{X} \leq a)=0.30$.
f) Find $\mu_{X}=E(X)$.
g) Find $\sigma_{X}=\operatorname{SD}(X)$.
2. Let X be a continuous random variable with the cumulative distribution function

$$
\begin{array}{ll}
\mathrm{F}(x)=0, & x<0, \\
\mathrm{~F}(x)=\frac{3}{8} \cdot x, & 0 \leq x \leq 2, \\
\mathrm{~F}(x)=1-\frac{1}{x^{2}}, & x>2 .
\end{array}
$$

a) Find the probability density function $f(x)$.
b) Find the probability $\mathrm{P}(1 \leq \mathrm{X} \leq 4)$.
c) Find $\mu_{X}=E(X)$.
d) Find $\sigma_{X}=\operatorname{SD}(X)$.

