Poisson Distribution:

X = the number of occurrences of a particular event in an interval of time or space.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=x)=\frac{\lambda^{x} \cdot e^{-\lambda}}{x!}, \quad \quad x=0,1,2,3, \ldots \\
& \mathrm{E}(\mathrm{X})=\lambda, \quad \operatorname{Var}(\mathrm{X})=\lambda .
\end{aligned}
$$

Table III (pp. $580-582$) gives $\quad \mathrm{P}(\mathrm{X} \leq X)$

1. Traffic accidents at a particular intersection follow Poisson distribution with an average rate of 1.4 per week.
a) What is the probability that the next week is accident-free?

$$
1 \text { week } \Rightarrow \lambda=1.4 . \quad \mathrm{P}(\mathrm{X}=0)=\frac{1.4^{0} \cdot e^{-1.4}}{0!} \approx \mathbf{0 . 2 4 6 6}
$$

b) What is the probability that there will be exactly 3 accidents next week?

$$
1 \text { week } \Rightarrow \lambda=1.4 . \quad \mathrm{P}(\mathrm{X}=3)=\frac{1.4^{3} \cdot e^{-1.4}}{3!} \approx \mathbf{0 . 1 1 2 8}
$$

c) What is the probability that there will be at most 2 accidents next week?

1 week $\Rightarrow \lambda=1.4$.
$P(X \leq 2)=P(X=0)+P(X=1)+P(X=2)$
$=\frac{1.4^{0} \cdot e^{-1.4}}{0!}+\frac{1.4^{1} \cdot e^{-1.4}}{1!}+\frac{1.4^{2} \cdot e^{-1.4}}{2!}$ $\approx 0.2466+0.3452+0.2417=\mathbf{0 . 8 3 3 5}$.
d) What is the probability that there will be at least 2 accidents during the next two weeks?

2 weeks $\Rightarrow \lambda=2.8$.

$$
\begin{aligned}
P(X \geq 2)=1 & -[P(X=0)+P(X=1)]=1-\left[\frac{2.8^{0} \cdot e^{-2.8}}{0!}+\frac{2.8^{1} \cdot e^{-2.8}}{1!}\right] \\
& \approx 1-[0.0608+0.1703]=\mathbf{0 . 7 6 8 9} .
\end{aligned}
$$

e) What is the probability that there will be exactly 5 accidents during the next four weeks?

4 weeks $\Rightarrow \lambda=5.6 . \quad \mathrm{P}(\mathrm{X}=5)=\frac{5.6^{5} \cdot e^{-5.6}}{5!} \approx \mathbf{0 . 1 6 9 7}$.
f) What is the probability that there will be exactly 2 accidents tomorrow?

1 day $\Rightarrow \lambda=0.2 . \quad \mathrm{P}(\mathrm{X}=2)=\frac{0.2^{2} \cdot e^{-0.2}}{2!} \approx \mathbf{0 . 0 1 6 4}$.
g) What is the probability that the next accident will not occur for three days?

$$
3 \text { days } \Rightarrow \lambda=0.6 . \quad \mathrm{P}(\mathrm{X}=0)=\frac{0.6^{0} \cdot e^{-0.6}}{0!} \approx \mathbf{0 . 5 4 8 8} .
$$

h) What is the probability that there will be exactly three accident-free weeks during the next eight weeks?
"Success" = an accident-free week
1 week $\Rightarrow \lambda=1.4$. $\quad p=\mathrm{P}($ "Success" $)=\mathrm{P}(\mathrm{X}=0)=\frac{1.4^{0} \cdot e^{-1.4}}{0!} \approx 0.2466$.
$\mathrm{P}($ exactly 3 accident-free weeks in 8 weeks $)={ }_{8} \mathrm{C}_{3} \cdot 0.2466^{3} \cdot 0.7534{ }^{5} \approx \mathbf{0 . 2 0 3 8 4}$.
(Binomial distribution)
i) What is the probability that there will be exactly five accident-free days during the next week?
"Success" = an accident-free day
1 day $\Rightarrow \lambda=0.2 . \quad p=\mathrm{P}($ "Success" $)=\mathrm{P}(\mathrm{X}=0)=\frac{0.2^{0} \cdot e^{-0.2}}{0!} \approx 0.81873$.
$\mathrm{P}($ exactly 5 accident-free days in 7 days $)={ }_{7} \mathrm{C}_{5} \cdot 0.81873^{5} \cdot 0.18127^{2} \approx \mathbf{0 . 2 5 3 8 5}$.
(Binomial distribution)

When n is large ($n \geq 20$) and p is small ($p \leq 0.05$) and $n \cdot p \leq 5$, Binomial probabilities can be approximated by Poisson probabilities. For this, set $\lambda=n \cdot p$.
2. Suppose the defective rate at a particular factory is 1%. Suppose 50 parts were selected from the daily output of parts. Let X denote the number of defective parts in the sample.
a) Find the probability that the sample contains exactly 2 defective parts.

$$
\mathrm{P}(X=2)=\binom{50}{2} \cdot(0.01)^{2} \cdot(0.99)^{48} \approx \mathbf{0 . 0 7 5 6 1 8} .
$$

b) Use Poisson approximation to find the probability that the sample contains exactly 2 defective parts.

$$
\begin{aligned}
& \lambda=n \cdot p=0.5 . \\
& \mathrm{P}(X=2)=\frac{0.5^{2} \cdot e^{-0.5}}{2!} \approx \mathbf{0 . 0 7 5 8 1 6} .
\end{aligned}
$$

c) Find the probability that the sample contains at most 1 defective part.

$$
\begin{aligned}
\mathrm{P}(X \leq 1) & =\mathrm{P}(X=0)+\mathrm{P}(X=1) \\
& =\binom{50}{0} \cdot(0.01)^{0} \cdot(0.99)^{50}+\binom{50}{1} \cdot(0.01)^{1} \cdot(0.99)^{49} \approx \mathbf{0 . 9 1 0 5 6 5 .}
\end{aligned}
$$

d) Use Poisson approximation to find the probability that the sample contains at most 1defective part.

$$
\begin{aligned}
\mathrm{P}(X \leq 1) & =\mathrm{P}(X=0)+\mathrm{P}(X=1) \\
& =\frac{0.5^{0} \cdot e^{-0.5}}{0!}+\frac{0.5^{1} \cdot e^{-0.5}}{1!} \approx \mathbf{0 . 9 0 9 7 9 6} .
\end{aligned}
$$

