Examples for 2.6

Poisson Distribution:

$\mathrm{X}=$ the number of occurrences of a particular event in an interval of time or space.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=x)=\frac{\lambda^{x} \cdot e^{-\lambda}}{x!}, \quad x=0,1,2,3, \ldots \\
& \mathrm{E}(\mathrm{X})=\lambda, \quad \operatorname{Var}(\mathrm{X})=\lambda .
\end{aligned}
$$

Table III (pp. $580-582$) gives $\quad \mathrm{P}(\mathrm{X} \leq \boldsymbol{X})$
$\begin{array}{llll}\text { EXCEL: } & =\operatorname{POISSON}(x, \lambda, 0) & \text { gives } & \mathrm{P}(\mathrm{X}=x) \\ & =\operatorname{POISSON}(x, \lambda, 1) & \text { gives } & \mathrm{P}(\mathrm{X} \leq x)\end{array}$

1. Traffic accidents at a particular intersection follow Poisson distribution with an average rate of 1.4 per week.
a) What is the probability that the next week is accident-free?
b) What is the probability that there will be exactly 3 accidents next week?
c) What is the probability that there will be at most 2 accidents next week?
d) What is the probability that there will be at least 2 accidents during the next two weeks?
e) What is the probability that there will be exactly 5 accidents during the next four weeks?
f) What is the probability that there will be exactly 2 accidents tomorrow?
g) What is the probability that the next accident will not occur for three days?
h) What is the probability that there will be exactly three accident-free weeks during the next eight weeks?
i) What is the probability that there will be exactly five accident-free days during the next week?

When n is large ($n \geq 20$) and p is small ($p \leq 0.05$) and $n \cdot p \leq 5$, Binomial probabilities can be approximated by Poisson probabilities. For this, set $\lambda=n \cdot p$.
2. Suppose the defective rate at a particular factory is 1%. Suppose 50 parts were selected from the daily output of parts. Let X denote the number of defective parts in the sample.
a) Find the probability that the sample contains exactly 2 defective parts.
b) Use Poisson approximation to find the probability that the sample contains exactly 2 defective parts.
c) Find the probability that the sample contains at most 1 defective part.
d) Use Poisson approximation to find the probability that the sample contains at most 1defective part.

