
STAT 400 
UIUC Examples for 2.4   (Extended) Stepanov 

Dalpiaz 
 
5. Suppose that on Halloween 6 children come to a house to get treats.  A bag 
 contains 8 plain chocolate bars and 7 nut bars.  Each child reaches into the bag 
 and randomly selects 1 candy bar.  Let X denote the number of nut bars selected. 
 
a) Is the Binomial model appropriate for this problem? 
 
 No.     Without replacement     ⇒     Trials are not independent. 
 
b) Find the probability that exactly 2 nut bars were selected. 
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Hypergeometric Distribution: 
 
 N = population size, 
 S = number of “successes” in the population, 
 N – S = number of “failures” in the population, 

 n = sample size. 
 
X = number of "successes" in the sample when sampling is done without replacement. 
 
Then 
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  max(0, n + S – N ) ≤ x ≤ min(n, S). 



c) Find the probability that at most 2 nut bars were selected. 
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d) Find the probability that at least 4 nut bars were selected. 
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6. A jar has N marbles, S of them are orange and N – S are blue.  Suppose 3 marbles 
 are selected.  Find the probability that there are 2 orange marbles in the sample, if  
 the selection is done … 
 
  with replacement    without replacement 
 
a) N = 10,  S = 4; 
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b) N = 100,  S = 40; 
 
 ( ) ( )12   

 60.040.023   
 

⋅⋅C  = 0.288. 
3100

160    240

 

  

 

  

C
CC ⋅

 ≈ 0.289425. 

 

c) N = 1,000,  S = 400; 
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 Binomial Hypergeometric 
 with replacement without replacement 
 
 

Probability 
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If the population size is large (compared to the sample size) Binomial Distribution can 
be used regardless of whether sampling is with or without replacement. 
 
 
 
 
6 ½ .    In each of the following cases, is it appropriate to use Binomial model? 

 If  yes, what are the values of its parameters n and p (if known)? 

 If  no, explain why Binomial model is not appropriate. 
 
a) A fair 6-sided die is rolled 7 times.  X = # of 6’s. 
 
  Yes.     n = 7,   p = 1/6 . 
 

b) A fair coin is tossed 3 times.  X = # of H’s. 
 
  Yes.     n = 3,   p = 0.50. 
 

c) An exam consists of 10 questions, the first 4 are True-False, the last 6 are multiple choice 
 questions with 4 possible answers each, only one of which is correct.  A student guesses 
 independently on each question.  X = # of questions he answers correctly. 
 
  No.      The probability of success is not the same for all trials. 
 

d) Suppose 20% of the customers at a particular gas station select Premium gas 
 X = # of customers at this gas station on a particular day who selected Premium gas. 
 
  No.      The number of trials is not fixed. 



e) Suppose 20% of the customers at a particular gas station select Premium gas 
 X = # of customers in the first 10 at a gas station on a particular day who selected 
 Premium gas. 
 
  Yes.     n = 10,   p = 0.20. 
 
f) A box contains 40 parts, 10 of which are defective.  A person takes 7 parts out of 
 the box with replacement.  X = # of defective parts selected. 
 
  Yes.     n = 7,   p = 10/40 = 0.25. 
 
g) A box contains 40 parts, 10 of which are defective.  A person takes 7 parts out of 
 the box without replacement.  X = # of defective parts selected. 
 
  No.      Trials are not independent. 
 
h) A box contains 400,000 parts, 100,000 of which are defective.  A person takes 7 
 parts out of the box without replacement.  X = # of defective parts selected. 
 
  No.      Trials are not independent.  However, Binomial distribution can be 
    used as an approximation. 
 
i) Seven members of the same family are tested for a particular food allergy. 
 X = # of family members who are allergic to this particular food. 
 
  Yes  if we can assume independence,  No  if we cannot. 
 
j) In Neverland, 10% of the labor force is unemployed.  A random sample of 400 
 individuals is selected.  X = # of individuals in the sample who are unemployed. 
 
  Yes.     n = 400,   p = 0.10. 
 
k) Suppose that 5% of tax returns have arithmetic errors.  25 tax returns are selected 
 at random.  X = # of arithmetic errors in those 25 tax returns. 
 
  No.      More than two possible outcomes for each trial. 
 
l) Suppose that 5% of tax returns have arithmetic errors.  25 tax returns are selected 
 at random.  X = # of tax returns among those 25 with arithmetic errors. 
 
  Yes.     n = 25,   p = 0.05. 



Multinomial Distribution: 
 
• The number of trials, n, is fixed. 

• Each trial has  k  possible outcomes, with probabilities  p 1 , p 2 , … , p k , 
 respectively.  ( p 1 + p 2 + … + p k = 1 ) 

• The trials are independent. 

• X 1 , X 2 , … , X k  represent the number of times outcome 1, outcome 2, … , 
 outcome k  occur, respectively.  ( X 1 + X 2 + … + X k = n ) 
 
Then 
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7. A particular brand of candy-coated chocolate comes in six different colors. 
 Suppose 30% of all pieces are brown, 20% are blue, 15% are red, 15% are yellow, 
 10% are green, and 10% are orange.  Thirty pieces are selected at random. 
 
a) What is the probability that 10 are brown, 8 are blue, 7 are red, 3 are yellow, 2 are 
 green, and none are orange? 
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b) What is the probability that 10 are brown, 8 are blue, and 12 are of other colors? 
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