5. Suppose that on Halloween 6 children come to a house to get treats. A bag contains 8 plain chocolate bars and 7 nut bars. Each child reaches into the bag and randomly selects 1 candy bar. Let X denote the number of nut bars selected.
a) Is the Binomial model appropriate for this problem?

No. Without replacement \Rightarrow Trials are not independent.
b) Find the probability that exactly 2 nut bars were selected.

OR

$$
{ }_{6} C_{2} \cdot\left[\frac{7}{15} \cdot \frac{6}{14}\right] \cdot\left[\frac{8}{13} \cdot \frac{7}{12} \cdot \frac{6}{11} \cdot \frac{5}{10}\right] \approx \mathbf{0 . 2 9 3 7}
$$

Hypergeometric Distribution:

$N=$ population size,
$S=$ number of "successes" in the population,
$N-S=$ number of "failures" in the population,
$n=$ sample size.
$X=$ number of "successes" in the sample when sampling is done without replacement.
Then

$$
\begin{gathered}
\mathrm{P}(X=x)=\frac{\binom{S}{x} \cdot\binom{N-S}{n-x}}{\binom{N}{n}}=\frac{{ }_{S} C_{x} \cdot{ }_{N-S} C_{n-x}}{{ }_{N} C_{n}} \\
\mathrm{OR} \\
\mathrm{P}(X=x)=\binom{n}{x} \cdot\left[\frac{S}{N} \cdot \frac{S-1}{N-1} \cdot \ldots \cdot \frac{S-x+1}{N-x+1}\right] \cdot\left[\frac{N-S}{N-x} \cdot \frac{N-S-1}{N-x-1} \cdot \ldots \cdot \frac{N-S-(n-x)+1}{N-n+1}\right] \\
\quad \max (0, n+S-N) \leq x \leq \min (n, S) .
\end{gathered}
$$

c) Find the probability that at most 2 nut bars were selected.

$$
\begin{aligned}
\mathrm{P}(\mathrm{X} \leq & 2)=\frac{{ }_{7} C_{0} \cdot{ }_{8} C_{6}}{{ }_{15} C_{6}}+\frac{{ }_{7} C_{1} \cdot{ }_{8} C_{5}}{{ }_{15} C_{6}}+\frac{{ }_{7} C_{2} \cdot{ }_{8} C_{4}}{{ }_{15} C_{6}} \\
& =\frac{1 \cdot 28}{5,005}+\frac{7 \cdot 56}{5,005}+\frac{21 \cdot 70}{5,005} \approx \mathbf{0 . 3 7 7 6} .
\end{aligned}
$$

d) Find the probability that at least 4 nut bars were selected.

$$
\begin{aligned}
\mathrm{P}(\mathrm{X} \geq & 4)=\frac{{ }_{7} C_{4} \cdot{ }_{8} C_{2}}{{ }_{15} C_{6}}+\frac{{ }_{7} C_{5} \cdot{ }_{8} C_{1}}{{ }_{15} C_{6}}+\frac{{ }_{7} C_{6} \cdot{ }_{8} C_{0}}{{ }_{15} C_{6}} \\
& =\frac{35 \cdot 28}{5,005}+\frac{21 \cdot 8}{5,005}+\frac{7 \cdot 1}{5,005} \approx \mathbf{0 . 2 3 0 7 7} .
\end{aligned}
$$

6. A jar has N marbles, S of them are orange and $N-S$ are blue. Suppose 3 marbles are selected. Find the probability that there are 2 orange marbles in the sample, if the selection is done ...
with replacement
without replacement
a) $\quad N=10, S=4$;

$$
{ }_{3} C_{2} \cdot(0.40)^{2} \cdot(0.60)^{1}=\mathbf{0 . 2 8 8} . \quad \frac{{ }_{4} C_{2} \cdot{ }_{6} C_{1}}{{ }_{10} C_{3}}=\mathbf{0 . 3 0}
$$

b) $\quad N=100, S=40$;

$$
{ }_{3} C_{2} \cdot(0.40)^{2} \cdot(0.60)^{1}=\mathbf{0 . 2 8 8} . \quad \frac{{ }_{40} C_{2} \cdot{ }_{60} C_{1}}{100 C_{3}} \approx \mathbf{0 . 2 8 9 4 2 5}
$$

c) $\quad N=1,000, S=400$;

$$
{ }_{3} C_{2} \cdot(0.40)^{2} \cdot(0.60)^{1}=\mathbf{0 . 2 8 8} . \quad \frac{400 C_{2} \cdot{ }_{600} C_{1}}{1000 C_{3}} \approx \mathbf{0 . 2 8 8 1 4 4} .
$$

Probability	Binomial	Hypergeometric
	with replacement	without replacement
Expected Value	$\mathrm{E}(X)=n \cdot\binom{n}{x} \cdot p^{X} \cdot(1-p)^{n-x}$	$\mathrm{P}(X=x)=\frac{\binom{S}{x} \cdot\binom{N-S}{n-x}}{\binom{N}{n}}$
Variance	$\operatorname{Var}(X)=n \cdot p \cdot(1-p)$	$\mathrm{E}(X)=n \cdot \frac{S}{N}$

If the population size is large (compared to the sample size) Binomial Distribution can be used regardless of whether sampling is with or without replacement.

6 $1 / 2$. In each of the following cases, is it appropriate to use Binomial model?
If yes, what are the values of its parameters n and p (if known)?
If no, explain why Binomial model is not appropriate.
a) A fair 6-sided die is rolled 7 times. $X=\#$ of 6's.

Yes. $n=7, p=1 / 6$.
b) A fair coin is tossed 3 times. $X=\#$ of H's.

Yes. $n=3, p=0.50$.
c) An exam consists of 10 questions, the first 4 are True-False, the last 6 are multiple choice questions with 4 possible answers each, only one of which is correct. A student guesses independently on each question. $X=\#$ of questions he answers correctly.

No. The probability of success is not the same for all trials.
d) Suppose 20% of the customers at a particular gas station select Premium gas $X=\#$ of customers at this gas station on a particular day who selected Premium gas.

No. The number of trials is not fixed.
e) Suppose 20% of the customers at a particular gas station select Premium gas $X=\#$ of customers in the first 10 at a gas station on a particular day who selected Premium gas.

Yes. $n=10, p=0.20$.
f) A box contains 40 parts, 10 of which are defective. A person takes 7 parts out of the box with replacement. $X=\#$ of defective parts selected.

$$
\text { Yes. } \quad n=7, \quad p=10 / 40=0.25
$$

g) A box contains 40 parts, 10 of which are defective. A person takes 7 parts out of the box without replacement. $X=\#$ of defective parts selected.

No. Trials are not independent.
h) A box contains 400,000 parts, 100,000 of which are defective. A person takes 7 parts out of the box without replacement. $X=\#$ of defective parts selected.

No. Trials are not independent. However, Binomial distribution can be used as an approximation.
i) Seven members of the same family are tested for a particular food allergy. $X=\#$ of family members who are allergic to this particular food.

Yes if we can assume independence, No if we cannot.
j) In Neverland, 10\% of the labor force is unemployed. A random sample of 400 individuals is selected. $\mathrm{X}=\#$ of individuals in the sample who are unemployed.

Yes. $n=400, p=0.10$.
k) Suppose that 5\% of tax returns have arithmetic errors. 25 tax returns are selected at random. $\mathrm{X}=\#$ of arithmetic errors in those 25 tax returns.

No. More than two possible outcomes for each trial.
l) Suppose that 5% of tax returns have arithmetic errors. 25 tax returns are selected at random. $\mathrm{X}=\#$ of tax returns among those 25 with arithmetic errors.

Yes. $n=25, p=0.05$.

Multinomial Distribution:

- \quad The number of trials, n, is fixed.
- Each trial has k possible outcomes, with probabilities $p_{1}, p_{2}, \ldots, p_{k}$, respectively. $\left(p_{1}+p_{2}+\ldots+p_{k}=1\right)$
- The trials are independent.
- $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{k}$ represent the number of times outcome 1 , outcome $2, \ldots$, outcome k occur, respectively. $\left(X_{1}+X_{2}+\ldots+X_{k}=n\right)$

Then

$$
\begin{array}{r}
\mathrm{P}\left(\mathrm{X}_{1}=x_{1}, \mathrm{X}_{2}=x_{2}, \ldots, \mathrm{X}_{k}=x_{k}\right)=\frac{n!}{x_{1}!x_{2}!\ldots x_{k}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k}^{x_{k}}, \\
x_{1}+x_{2}+\ldots+x_{k}=n
\end{array}
$$

7. A particular brand of candy-coated chocolate comes in six different colors. Suppose 30% of all pieces are brown, 20% are blue, 15% are red, 15% are yellow, 10% are green, and 10% are orange. Thirty pieces are selected at random.
a) What is the probability that 10 are brown, 8 are blue, 7 are red, 3 are yellow, 2 are green, and none are orange?
$\frac{30!}{10!\cdot 8!\cdot 7!\cdot 3!\cdot 2!\cdot 0!} \cdot(0.30)^{10} \cdot(0.20)^{8} \cdot(0.15)^{7} \cdot(0.15)^{3} \cdot(0.10)^{2} \cdot(0.10)^{0}$
b) What is the probability that 10 are brown, 8 are blue, and 12 are of other colors?

$$
\frac{30!}{10!\cdot 8!\cdot 12!} \cdot(0.30)^{10} \cdot(0.20)^{8} \cdot(0.50)^{12}
$$

