Examples for 2.4, 2.5

Binomial Distribution:

1. The number of trials, n, is fixed.
2. Each trial has two possible outcomes: "success" and "failure".
3. The probability of "success", p, is the same from trial to trial.
4. The trials are independent.
5. $\quad \mathrm{X}=$ number of "successes" in n independent trials.

Then

$$
\mathrm{P}(\mathrm{X}=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}={ }_{n} C_{k} \cdot p^{k} \cdot(1-p)^{n-k},
$$

where $k=0,1, \ldots, n$.
$\mathrm{E}(\mathrm{X})=n \cdot p \quad \operatorname{Var}(\mathrm{X})=n \cdot p \cdot(1-p) \quad \mathrm{SD}(\mathrm{X})=\sqrt{n \cdot p \cdot(1-p)}$

1. Bart Simpson takes a multiple choice exam in his Statistics 101 class. The exam has 15 questions, each has 5 possible answers, only one of which is correct. Bart did not study for the exam, so he guesses independently on every question. Let X denote the number of questions that Bart gets right.
a) Is it appropriate to use Binomial model for this problem?

Yes. Binomial, $n=15, p=1 / 5=0.20$.
b) What is the expected number of questions that Bart would get right?

$$
\mathrm{E}(\mathrm{X})=n \cdot p=15 \cdot 0.20=3 .
$$

c) What is the probability that Bart answers exactly 3 questions correctly?
$P(X=3)=\binom{15}{3} \cdot(0.20)^{3} \cdot(0.80)^{12}=\mathbf{0 . 2 5 0 1 3 8 9}$.
OR
$\mathrm{P}(\mathrm{X}=3)=\mathrm{CDF} @ 3-\mathrm{CDF} @ 2=0.648-0.398=\mathbf{0 . 2 5 0}$.
d) What is the probability that Bart would get at most 5 of the questions right?

$$
P(X \leq 5)=\text { CDF @ } 5=\mathbf{0 . 9 3 9 .}
$$

e) What is the probability that Bart would get more than half of the questions right (i.e. what is the probability that Bart would get at least 8 of the questions right)?
$\mathrm{P}(\mathrm{X} \geq 8)=1-\mathrm{CDF} @ 7=1-0.996=\mathbf{0 . 0 0 4}$.
f) Find the probability that Bart answers between 4 and 6 (including both 4 and 6) questions correctly?

$$
\begin{aligned}
& P(4 \leq X \leq 6)=\text { CDF @ } 6-\text { CDF @ } 3=0.982-0.648=\mathbf{0 . 3 3 4} . \\
& \text { OR } \\
& \begin{aligned}
& P(4 \leq X \leq 6)=\binom{15}{4} \cdot(0.20)^{4} \cdot(0.80)^{11}+\binom{15}{5} \cdot(0.20)^{5} \cdot(0.80)^{10}+\binom{15}{6} \cdot(0.20)^{6} \cdot(0.80)^{9} \\
&=0.18760417+0.10318229+0.04299262=\mathbf{0 . 3 3 3 7 7 9 0 8} .
\end{aligned}
\end{aligned}
$$

> Binomial
> $n=15$
> $p=0.20$

Outcome	Probability
0	0.03518437
1	0.13194140
2	0.23089744
3	0.25013890
4	0.18760417
5	0.10318229
6	0.04299262
7	0.01381906
8	0.00345476
9	0.00067176
10	0.00010076
11	0.00001145
12	0.00000095
13	0.00000006
14	0.00000000
15	0.00000000

EXCEL:

$$
=\operatorname{BINOMDIST}(k, n, p, 0)
$$

$=\operatorname{BINOMDIST}(k, n, p, 1)$
2. \cdot) An automobile salesman thinks that the probability of making a sale is 0.30 . If he talks to five customers on a particular day, what is the probability that he will make exactly 2 sales? (Assume independence.)
$\mathrm{X}=$ number of sales. Binomial, $n=5, \quad p=0.30$.
$\mathrm{P}(\mathrm{X}=2)=\binom{5}{2} \cdot(0.30)^{2} \cdot(0.70)^{3}=\mathbf{0 . 3 0 8 7}$.
OR
$\mathrm{P}(\mathrm{X}=2)=\mathrm{CDF} @ 2-\mathrm{CDF} @ 1=0.837-0.528=\mathbf{0 . 3 0 9}$.

21⁄2. Often On time Parcel Service (OOPS) delivers a package to the wrong address with probability 0.05 on any delivery. Suppose that each delivery is independent of all the others. There were 7 packages delivered on a particular day.
a) $)$ What is the probability that at least one of them was delivered to the wrong address?
$\mathrm{P}(\mathrm{X} \geq 1)=1-\mathrm{CDF} @ 0=1-0.698=\mathbf{0 . 3 0 2}$.
b) What is the probability that exactly two of them were delivered to the wrong address?
$P(X=2)=\binom{7}{2} \cdot(0.05)^{2} \cdot(0.95)^{5}=\mathbf{0 . 0 4 0 6 2 3 5}$.
OR
$P(X=2)=C D F @ 2-C D F @ 1=0.996-0.956=\mathbf{0 . 0 4 0}$.
c) What is the probability that at most two of them were delivered to the wrong address?
$P(X \leq 2)=C D F @ 2=\mathbf{0 . 9 9 6}$.
d) What is the probability that at least two of them were delivered to the wrong address?
$\mathrm{P}(\mathrm{X} \geq 2)=1-\mathrm{CDF} @ 1=1-0.956=\mathbf{0 . 0 4 4}$.
3. © A major oil company has decided to drill independent test wells in the Alaskan wilderness. The probability of any well producing oil is 0.30 . Find the probability that the fifth well is the first to produce oil.

F	F	F	F	S
0.70	0.70	0.70	$\cdot 0.70 \cdot 0.30=$	$\mathbf{0 . 0 7 2 0 3}$.

Geometric Distribution:

$X=$ the number of independent trials until the first "success".
Then

$$
\begin{array}{ll}
\mathrm{P}(X=x)=(1-p)^{x-1} \cdot p, & x=1,2,3, \ldots \\
\mathrm{E}(X)=\frac{1}{p} . & \operatorname{Var}(X)=\frac{1-p}{p^{2}} .
\end{array}
$$

4. A slot machine at a casino randomly rewards 15% of the attempts. Assume that all attempts are independent.
a) What is the probability that your first reward occurs on your fourth trial?

F	F	F	S
0.85		0.85	
	0.85	$\cdot 0.15$	$\approx \mathbf{0 . 0 9 2}$.

Geometric, $p=0.15$.
b) What is the probability that your first reward occurs on your seventh trial?

F	F	F	F	F	F	S
0.85	0.85	$\cdot 0.85$	0.85	0.85	0.85	$\cdot 0.15$

Geometric, $p=0.15$.
c) What is the probability that your get three rewards in ten trials?

Binomial, $n=10, p=0.15$.
$\mathrm{P}(X=3)=\binom{10}{3} \cdot(0.15)^{3} \cdot(0.85)^{7} \approx \mathbf{0 . 1 2 9 8}$.
d) What is the probability that your third reward occurs on your tenth trial?
[9 trials: 2 S's \& 7 F's] S
$\left[\binom{9}{2} \cdot(0.15)^{2} \cdot(0.85)^{7}\right] \cdot 0.15 \approx \mathbf{0 . 0 3 8 9 5}$.
Negative Binomial, $k=3, \quad p=0.15$.

Negative Binomial Distribution:

$X=$ the number of independent trials until the $k^{\text {th } " s u c c e s s " . ~}$
Then

$$
\begin{aligned}
& \mathrm{P}(X=x)=\binom{x-1}{k-1} \cdot p^{k} \cdot(1-p)^{x-k}, \quad x=k, k+1, k+2, \ldots \\
& \mathrm{E}(X)=\frac{k}{p} . \quad \mathrm{V}(X)=\frac{k \cdot(1-p)}{p^{2}} .
\end{aligned}
$$

EXCEL: $\quad=\operatorname{NEGBINOMDIST}(x-k, k, p)$ gives $\mathrm{P}(X=x)$
e) What is the probability that your fourth reward occurs on your fifteenth trial?
[14 trials: 3 S's \& 11 F's] S
$\left[\binom{14}{3} \cdot(0.15)^{3} \cdot(0.85)^{11}\right] \cdot 0.15 \approx \mathbf{0 . 0 3 0 8 3 7}$.
Negative Binomial, $k=4, \quad p=0.15$.
f) What is the probability that your get four rewards in fifteen trials?

Binomial, $n=15, p=0.15$.

$$
\mathrm{P}(X=4)=\binom{15}{4} \cdot(0.15)^{4} \cdot(0.85)^{11} \approx \mathbf{0 . 1 1 5 6 4}
$$

Let X be a random variable with a Geometric distribution with probability of "success" p. Then

$$
\mathrm{P}(\mathrm{X}>a)=\sum_{k=a+1}^{\infty}(1-p)^{k-1} p=\frac{(1-p)^{a} p}{1-(1-p)}=(1-p)^{a}, \quad a=0,1,2,3, \ldots
$$

OR

$\mathrm{X}=$ number of independent attempts needed to get the first "success".
$\mathrm{P}(\mathrm{X}>a)=\mathrm{P}($ the first a attempts are "failures" $)=(1-p)^{a}, \quad a=0,1,2,3, \ldots$.

Ex. Let X denote the number of rolls of a fair 6 -seded die needed to observe the first " 6 ".

$$
P(4 \leq X \leq 7)=\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)^{4}\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)^{5}\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)^{6}\left(\frac{1}{6}\right) \approx 0.299622 .
$$

OR
$\mathrm{P}(4 \leq \mathrm{X} \leq 7)=\mathrm{P}(\mathrm{X}>3)-\mathrm{P}(\mathrm{X}>7)=\left(\frac{5}{6}\right)^{3}-\left(\frac{5}{6}\right)^{7} \approx 0.299622$.

For positive integers a and b,

$$
\mathrm{P}(\mathrm{X}>a+b \mid \mathrm{X}>a)=\mathrm{P}(\mathrm{X}>b)
$$

(memoryless property).

$$
\begin{aligned}
\mathrm{P}(\mathrm{X}>a+b \mid \mathrm{X}>a) & =\frac{\mathrm{P}(\mathrm{X}>a+b \cap \mathrm{X}>a)}{\mathrm{P}(\mathrm{X}>a)}=\frac{\mathrm{P}(\mathrm{X}>a+b)}{\mathrm{P}(\mathrm{X}>a)} \\
& =\frac{(1-p)^{a+b}}{(1-p)^{a}}=(1-p)^{b}=\mathrm{P}(\mathrm{X}>b)
\end{aligned}
$$

