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 The k th moment of X (the k th moment of X about the origin), µ k , is given by 

   µ k = E ( X k ) = ( )∑ ⋅
x

k xfx
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 The k th central moment of X (the k th moment of X about the mean), µ k' , is given by 

   µ k' = E ( ( X – µ ) k ) = ( ) ( )∑ ⋅−
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 The moment-generating function of X, M X ( t ), is given by 

   M X ( t ) = E ( e t X ) = ( )∑ ⋅
x

xt xfe
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Theorem 2:  M X 1
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Theorem 3:  Let  Y = a X + b.  Then  M Y ( t ) = e b t M X ( a t ) 
 
 
 
1. Suppose a random variable X has the following probability distribution: 
 
 x f ( x ) Find the moment-generating function of X, M X ( t ). 
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2. Suppose the moment-generating function of a random variable X is 
 
  M X ( t )  =  0.10  +  0.15 e 

t  +  0.20 e 
2 t  +  0.25 e 

– 3 t  +  0.30 e 
5 t. 

 
 Find the expected value of X, E(X). 
 
 

 M X' ( t )  =  0.15 e 
t  +  0.40 e 

2 t  –  0.75 e 
– 3 t  +  1.50 e 

5 t. 
 
 E ( X )  =  M X' ( 0 )  =  0.15 + 0.40 – 0.75 + 1.50  =  1.30. 
 

OR 
 
 x f ( x ) x ⋅ f ( x )   
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3. Suppose a discrete random variable X has the following probability distribution: 
 

 f ( 0 ) = P( X = 0 ) = 21 2 e− ,  f ( k ) = P( X = k ) = 
!2
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,   k = 1, 2, 3, … 

 
a) Find the moment-generating function of X,  M X ( t ). 
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b) Find the expected value of X,  E ( X ),  and  the variance of X,  Var ( X ). 
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4. Let  X  be a  Binomial ( n, p )  random variable. 
 Find the moment-generating function of X. 
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5. Let  X  be a geometric random variable with probability of “success” p. 
 
a) Find the moment-generating function of  X. 
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b) Use the moment-generating function of  X  to find  E ( X ). 
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6. a) Find the moment-generating function of a Poisson random variable. 
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   ( ln M X ( t ) ) 
' | t = 0 = E ( X ) = µ X 

 

   ( ln M X ( t ) ) 
" | t = 0 = E ( X 2 ) – [ E ( X ) ] 2 = σ X

2 
 
 

 b) Find  E ( X )  and  Var ( X ),  where X is a Poisson random variable. 
 

  ln M X ( t ) = λ ( e 
t – 1 ). 

 

  ( ln M X ( t ) ) 
' = λ e 

t.        ( ln M X ( t ) ) 
' | t = 0 = E ( X ) = λ. 
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