The k th moment of X (the $k^{\text {th }}$ moment of X about the origin), μ_{k}, is given by

$$
\mu_{k}=\mathrm{E}\left(\mathrm{X}^{k}\right)=\sum_{\operatorname{all} x} x^{k} \cdot f(x)
$$

The $k^{\text {th }}$ central moment of X (the $k^{\text {th }}$ moment of X about the mean), μ_{k}^{\prime}, is given by

$$
\mu_{k}^{\prime}=\mathrm{E}\left((\mathrm{X}-\mu)^{k}\right)=\sum_{\text {all } x}(x-\mu)^{k} \cdot f(x)
$$

The moment-generating function of $\mathrm{X}, \mathrm{M}_{\mathrm{X}}(t)$, is given by

$$
\mathrm{M}_{\mathrm{X}}(t)=\mathrm{E}\left(e^{t \mathrm{X}}\right)=\sum_{\mathrm{all} X} e^{t x} \cdot f(x)
$$

Theorem 1:

$$
\begin{gathered}
M_{X}^{\prime}(0)=E(X) \quad M_{X}^{\prime \prime}(0)=E\left(X^{2}\right) \\
M_{X}^{(k)}(0)=E\left(X^{k}\right)
\end{gathered}
$$

Theorem 2: $\quad \mathrm{M}_{\mathrm{X}_{1}}(t)=\mathrm{M}_{\mathrm{X}_{2}}(t)$ for some interval containing 0

$$
\Rightarrow \quad f_{\mathrm{X}_{1}}(x)=f_{\mathrm{X}_{2}}(x)
$$

Theorem 3:
Let $\mathrm{Y}=a \mathrm{X}+b$. Then $\mathrm{M}_{\mathrm{Y}}(t)=e^{b t} \mathrm{M}_{\mathrm{X}}(a t)$

1. Suppose a random variable X has the following probability distribution:

x	$f(x)$
10	0.20
11	0.40
12	0.30
13	0.10

Find the moment-generating function of $\mathrm{X}, \mathrm{M}_{\mathrm{X}}(t)$.
2. Suppose the moment-generating function of a random variable X is

$$
\mathrm{M}_{\mathrm{X}}(t)=0.10+0.15 e^{t}+0.20 e^{2 t}+0.25 e^{-3 t}+0.30 e^{5 t}
$$

Find the expected value of $\mathrm{X}, \mathrm{E}(\mathrm{X})$.
3. Suppose a discrete random variable X has the following probability distribution: $f(0)=\mathrm{P}(\mathrm{X}=0)=2-e^{1 / 2}, \quad f(k)=\mathrm{P}(\mathrm{X}=k)=\frac{1}{2^{k} \cdot k!}, \quad k=1,2,3, \ldots$
a) Find the moment-generating function of $X, M_{X}(t)$.
b) Find the expected value of $X, E(X)$, and the variance of $X, \operatorname{Var}(X)$.
4. Let X be a $\operatorname{Binomial}(n, p)$ random variable. Find the moment-generating function of X .
5. Let X be a geometric random variable with probability of "success" p.
a) Find the moment-generating function of X .
b) Use the moment-generating function of X to find $E(X)$.
6. a) Find the moment-generating function of a Poisson random variable.

Consider $\ln \mathrm{M}_{\mathrm{X}}(t)$. (cumulant generating function)

$$
\left(\ln \mathrm{M}_{\mathrm{X}}(t)\right)^{\prime}=\frac{\mathrm{M}_{\mathrm{X}}^{\prime}(t)}{\mathrm{M}_{\mathrm{X}}(t)} \quad\left(\ln \mathrm{M}_{\mathrm{X}}(t)\right)^{\prime \prime}=\frac{\mathrm{M}_{\mathrm{X}}^{\prime \prime}(t) \cdot \mathrm{M}_{\mathrm{X}}(t)-\left[\mathrm{M}_{\mathrm{X}}^{\prime}(t)\right]^{2}}{\left[\mathrm{M}_{\mathrm{X}}(t)\right]^{2}}
$$

Since $\quad M_{X}(0)=1, M_{X}{ }^{\prime}(0)=E(X), M_{X}{ }^{\prime \prime}(0)=E\left(X^{2}\right)$,

$$
\left.\left(\ln \mathrm{M}_{\mathrm{X}}(t)\right)^{\prime}\right|_{t=0}=\mathrm{E}(\mathrm{X})=\mu_{\mathrm{X}}
$$

$$
\left.\left(\ln \mathrm{M}_{\mathrm{X}}(t)\right)^{"}\right|_{t=0}=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}=\sigma_{\mathrm{X}}^{2}
$$

b) Find $\mathrm{E}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{X})$, where X is a Poisson random variable.

