1.	A balanced (fair) coin is tossed twice.	Outcomes	x	f(x)
	Let X denote the number of H's.	TT	0	1/4
	Construct the probability distribution of X.	HT TH	1	$\frac{1}{2}$
	$S = \{ HH, HT, TH, TT \}$	HH	2	1/4
	X = 2 1 1 0			1.00

Just for fun:	Outcomes	x	f(x)
Suppose $P(H) = 0.60$,	TT	0	$0.40 \times 0.40 = 0.16$
P(T) = 0.40.	HT TH	1	$0.60 \times 0.40 + 0.40 \times 0.60 = 0.48$
	HH	2	$0.60 \times 0.60 = 0.36$
			1.00

1¹/2. Suppose Homer Simpson has five coins: 2 nickels, 2 dimes and 1 quarter. Let X denote the amount Bart gets if he steals two coins at random.

a) Construct the probability distribution of X.

STAT 400

UIUC

_	Outc	omes	X	$f(\mathbf{x})$	
	Ν	Ν	0.10	$\frac{2}{5} \cdot \frac{1}{4} = \frac{2}{20}$	= 0.1
	N D	D N	0.15	$\frac{2}{5} \cdot \frac{2}{4} + \frac{2}{5} \cdot \frac{2}{4} = \frac{8}{20}$	= 0.4
	D	D	0.20	$\frac{2}{5} \cdot \frac{1}{4} = \frac{2}{20}$	= 0.1
	N Q	Q N	0.30	$\frac{2}{5} \cdot \frac{1}{4} + \frac{1}{5} \cdot \frac{2}{4} = \frac{4}{20}$	= 0.2
	DQ	Q D	0.35	$\frac{2}{5} \cdot \frac{1}{4} + \frac{1}{5} \cdot \frac{2}{4} = \frac{4}{20}$	= 0.2
					1.0

	N ₁	N2	D1	D2	Q
N ₁	*	0.10	0.15	0.15	0.30
N ₂	0.10	*	0.15	0.15	0.30
D1	0.15	0.15	*	0.20	0.35
D2	0.15	0.15	0.20	*	0.35
Q	0.30	0.30	0.35	0.35	*

Х	$f(\mathbf{x})$		
0.10	² /20	=	0.1
0.15	⁸ /20	=	0.4
0.20	² / ₂₀	=	0.1
0.30	4/20	=	0.2
0.35	4/20	=	0.2
			10

* – do not steal the same coin twice.

1.0

OR

Outcomes	X	$f(\mathbf{x})$	
N N	0.10	$\frac{{}_2C_2 \cdot {}_2C_0 \cdot {}_1C_0}{{}_5C_2}$	= 0.1
N D	0.15	$\frac{{}_2C_1 \cdot {}_2C_1 \cdot {}_1C_0}{{}_5C_2}$	= 0.4
D D	0.20	$\frac{{}_2C_0 \cdot {}_2C_2 \cdot {}_1C_0}{{}_5C_2}$	= 0.1
N Q	0.30	$\frac{{}_2C_1 \cdot {}_2C_0 \cdot {}_1C_1}{{}_5C_2}$	= 0.2
D Q	0.35	$\frac{{}_2C_0 \cdot {}_2C_1 \cdot {}_1C_1}{{}_5C_2}$	= 0.2
			1.0

Х	$f(\mathbf{x})$	$\mathbf{x} \cdot f(\mathbf{x})$	$\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{X}}\right)^{2}\cdot f(\mathbf{x})$	$\mathbf{x}^2 \cdot f(\mathbf{x})$
0.10	0.1	0.01	0.00144	0.0010
0.15	0.4	0.06	0.00196	0.0090
0.20	0.1	0.02	0.00004	0.0040
0.30	0.2	0.06	0.00128	0.0180
0.35	0.2	0.07	0.00338	0.0245
	1.0	0.22	0.00810	0.0565

b) Find the expected value of the amount that Bart gets, E(X).

$$\mu_{X} = E(X) = \sum_{\text{all } x} x \cdot f(x) =$$
\$0.22.

c) Find the standard deviation SD(X).

$$\sigma_X^2 = \operatorname{Var}(X) = \sum_{\text{all } x} (x - \mu_X)^2 \cdot f(x) = 0.0081.$$
OR
$$\sigma_X^2 = \operatorname{Var}(X) = \sum_{\text{all } x} x^2 \cdot f(x) - \mu_X^2 = 0.0565 - (0.22)^2 = 0.0565 - 0.0484 = 0.0081.$$

$$\sigma_X = \operatorname{SD}(X) = \sqrt{0.0081} = \$ 0.09.$$

2. Suppose a random variable X has the following probability distribution:

<i>x</i>	f(x)
10	0.20
11	0.40
12	0.30
13	0.10

a) Find the expected value of X, E(X).

x	f(x)	$x \cdot f(x)$
10	0.2	2.0
11	0.4	4.4
12	0.3	3.6
13	0.1	1.3
	1.0	11.3

$$\mu_{\rm X} = {\rm E}({\rm X}) = \sum_{{\rm all}\,x} x \cdot f(x) = 11.3.$$

b) Find the variance of X, Var(X).

X	f(x)	$(x - \mu_X)$	$(x-\mu_{\rm X})^2 \cdot f(x)$
10	0.2	-1.3	$1.69 \cdot 0.2 = 0.338$
11	0.4	-0.3	$0.09 \cdot 0.4 = 0.036$
12	0.3	0.7	$0.49 \cdot 0.3 = 0.147$
13	0.1	1.7	$2.89 \cdot 0.1 = 0.289$
			0.810

$$\sigma_{\rm X}^2 = {\rm Var}({\rm X}) = \sum_{{\rm all } x} (x - \mu_{\rm X})^2 \cdot f(x) = 0.81.$$

	OR				
x	f(x)	$x^2 \cdot f(x)$			
10	0.2	20.0			
11	0.4	48.4			
12	0.3	43.2			
13	0.1	16.9			
		128.5			

$$\sigma_{\rm X}^2 = {\rm Var}({\rm X}) = \sum_{{\rm all}\,x} x^2 \cdot f(x) - [{\rm E}({\rm X})]^2 = 128.5 - (11.3)^2 = 0.81.$$

c) Find the standard deviation of X, SD(X).

$$\sigma_{\rm X} = {\rm SD}({\rm X}) = \sqrt{\sigma_{\rm X}^2} = 0.9.$$

d) Find the cumulative distribution function of X, $F(x) = P(X \le x)$.

X	f(x)	F(x)		0	<i>x</i> < 10
10	0.2	0.2		0.2	$10 \le x < 11$
11	0.4	0.6	$F(x) = \langle$	0.6	$11 \le x < 12$
12	0.3	0.9		0.9	$12 \le x < 13$
13	0.1	1.0		1	$x \ge 13$

3. Suppose
$$E(X) = 7$$
, $SD(X) = 3$.

a)
$$Y = 2 X + 3$$
. Find E(Y) and SD(Y).
E(Y) = 2 E(X) + 3 = **17**. $SD(Y) = |2| SD(X) = 6.$

b)
$$W = 5 - 2 X$$
. Find E(W) and SD(W).
E(W) = 5 - 2 E(X) = -9. $SD(Y) = |-2|SD(X) = 6.$

 $3^{1/2}$. Suppose a discrete random variable X has the following probability distribution:

$$f(x) = \left(\frac{1}{2}\right)^x$$
, $x = 1, 2, 3, ...$

- a) Verify that this is a valid probability distribution.
 - $f(x) \ge 0 \quad \forall x$ • $\sum_{\text{all } x} f(x) = 1$ $\sum_{x=1}^{\infty} \left(\frac{1}{2}\right)^x = \frac{\text{first term}}{1 - \text{base}} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1.$

b) Find P(X is divisible by 3).

 $P(X \text{ is divisible by } 3) = P(3) + P(6) + P(9) + P(12) + \dots$

$$= \frac{1}{2^3} + \frac{1}{2^6} + \frac{1}{2^9} + \frac{1}{2^{12}} + \dots = \sum_{k=1}^{\infty} \left(\frac{1}{8}\right)^k = \frac{1}{8} \cdot \frac{1}{1 - \frac{1}{8}} = \frac{1}{7}.$$

c) Find P(X is divisible by 3 | X is divisible by 2).

P(X is divisible by 3 | X is divisible by 2)

$$= \frac{P(X \text{ is divisible by } 3 \cap X \text{ is divisible by } 2)}{P(X \text{ is divisible by } 2)}$$
$$= \frac{P(X \text{ is divisible by } 6)}{P(X \text{ is divisible by } 2)}.$$

 $P(X \text{ is divisible by } 2) = P(2) + P(4) + P(6) + P(8) + \dots$

$$= \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \frac{1}{2^8} + \dots = \sum_{k=1}^{\infty} \left(\frac{1}{4}\right)^k = \frac{1}{4} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{3}.$$

 $P(X \text{ is divisible by } 6) = P(6) + P(12) + P(18) + P(24) + \dots$

$$= \frac{1}{2^6} + \frac{1}{2^{12}} + \frac{1}{2^{18}} + \frac{1}{2^{24}} + \dots = \sum_{k=1}^{\infty} \left(\frac{1}{64}\right)^k = \frac{1}{64} \cdot \frac{1}{1 - \frac{1}{64}} = \frac{1}{63}.$$

P(X is divisible by 3 | X is divisible by 2)

$$= \frac{P(X \text{ is divisible by } 3 \cap X \text{ is divisible by } 2)}{P(X \text{ is divisible by } 2)}$$
$$= \frac{P(X \text{ is divisible by } 6)}{P(X \text{ is divisible by } 2)} = \frac{\frac{1}{63}}{\frac{1}{3}} = \frac{1}{21}.$$

d) Find E(X).

$$E(X) = \sum_{\text{all } x} x \cdot f(x) = \sum_{x=1}^{\infty} x \cdot \left(\frac{1}{2}\right)^{x} = 1 \cdot \frac{1}{2^{1}} + 2 \cdot \frac{1}{2^{2}} + 3 \cdot \frac{1}{2^{3}} + 4 \cdot \frac{1}{2^{4}} + \dots$$

$$\frac{1}{2} E(X) = 1 \cdot \frac{1}{2^{2}} + 2 \cdot \frac{1}{2^{3}} + 3 \cdot \frac{1}{2^{4}} + \dots$$

$$\Rightarrow \quad \frac{1}{2} E(X) = E(X) - \frac{1}{2} E(X) = 1 \cdot \frac{1}{2^{1}} + 1 \cdot \frac{1}{2^{2}} + 1 \cdot \frac{1}{2^{3}} + 1 \cdot \frac{1}{2^{4}} + \dots = 1.$$

$$\Rightarrow \quad E(X) = \mathbf{2}.$$

e) Find the cumulative distribution function of X, $F(x) = P(X \le x)$.

For
$$k = 1, 2, 3, ...,$$

$$P(X > k) = f(k+1) + f(k+2) + f(k+3) + f(k+4) + ...$$

$$= \frac{1}{2^{k+1}} + \frac{1}{2^{k+2}} + \frac{1}{2^{k+3}} + \frac{1}{2^{k+4}} + ...$$

$$= \frac{first \ term}{1 - base} = \frac{\frac{1}{2^{k+1}}}{1 - \frac{1}{2}} = \frac{1}{2^{k}}.$$

$$P(X > k) = 1 - P(X \le k).$$

$$\Rightarrow P(X \le k) = 1 - \frac{1}{2^k}.$$

$$\Rightarrow F(x) = P(X \le x) = \begin{cases} 0 & x < 1 \\ 1 - \frac{1}{2^k} & k \le x < k + 1 \\ k = 1, 2, 3, \dots \end{cases}$$

4. Suppose a discrete random variable X has the following probability distribution:

$$P(X=0) = 2 - \sqrt{e}$$
, $P(X=k) = \frac{1}{2^k \cdot k!}$, $k = 1, 2, 3, ...$

a) Find E(X).

$$E(X) = \sum_{\text{all } x} x \cdot f(x) = 0 \cdot \left(2 - e^{1/2}\right) + \sum_{k=1}^{\infty} k \cdot \frac{1}{2^k \cdot k!} = \sum_{k=1}^{\infty} \frac{1}{2^k \cdot (k-1)!}$$
$$= \frac{1}{2} \cdot \sum_{k=1}^{\infty} \frac{1}{2^{k-1} \cdot (k-1)!} = \frac{1}{2} \cdot \sum_{n=0}^{\infty} \frac{1}{2^n \cdot n!} = \frac{e^{1/2}}{2}.$$

$$E(X(X-1)) = \sum_{k=2}^{\infty} k \cdot (k-1) \cdot \frac{1}{2^k \cdot k!} = \sum_{k=2}^{\infty} \frac{1}{2^k \cdot (k-2)!}$$
$$= \frac{1}{4} \cdot \sum_{k=2}^{\infty} \frac{1}{2^{k-2} \cdot (k-2)!} = \frac{1}{4} \cdot \sum_{n=0}^{\infty} \frac{1}{2^n \cdot n!} = \frac{e^{1/2}}{4}.$$
$$E(X^2) = E(X(X-1)) + E(X) = \frac{3}{4} \cdot e^{1/2}.$$
$$Var(X) = E(X^2) - [E(X)]^2 = \frac{3}{4} \cdot e^{1/2} - \frac{1}{4} \cdot e.$$