1. A balanced (fair) coin is tossed twice.

Let X denote the number of H's.
Construct the probability distribution of X.

S $=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
$\begin{array}{lllll}X= & 1 & 1 & 0\end{array}$

Outcomes	x	$f(x)$
TT	0	$1 / 4$
HT TH	1	$1 / 2$
HH	2	$1 / 4$
	1.00	

Just for fun:
Suppose $\mathrm{P}(\mathrm{H})=0.60$, $P(T)=0.40$.

Outcomes	x	$f(x)$
TT	0	$0.40 \times 0.40=\mathbf{0 . 1 6}$
HT TH	1	$0.60 \times 0.40+0.40 \times 0.60=\mathbf{0 . 4 8}$
HH	2	$0.60 \times 0.60=\mathbf{0 . 3 6}$

11⁄2. Suppose Homer Simpson has five coins: 2 nickels, 2 dimes and 1 quarter.
Let X denote the amount Bart gets if he steals two coins at random.
a) Construct the probability distribution of X .

Outcomes		X	$f(\mathrm{x})$	
N N		0.10	$2 / 5 \cdot 1 / 4=2 / 20$	$=0.1$
N D	D N	0.15	$2 / 5 \cdot 2 / 4+2 / 5 \cdot 2 / 4=8 / 20$	$=0.4$
D D		0.20	$2 / 5 \cdot 1 / 4=2 / 20$	$=0.1$
N Q	Q N	0.30	$2 / 5 \cdot 1 / 4+1 / 5 \cdot 2 / 4=4 / 20$	$=0.2$
D Q	Q D	0.35	$2 / 5 \cdot 1 / 4+1 / 5 \cdot 2 / 4=4 / 20$	$=0.2$
				1.0

OR

	N_{1}	$\mathrm{~N}_{2}$	D_{1}	D_{2}	Q
N_{1}	$*$	0.10	0.15	0.15	0.30
$\mathrm{~N}_{2}$	0.10	$*$	0.15	0.15	0.30
D_{1}	0.15	0.15	$*$	0.20	0.35
D_{2}	0.15	0.15	0.20	$*$	0.35
Q	0.30	0.30	0.35	0.35	$*$

* - do not steal the same coin twice.

x	$f(\mathrm{x})$
0.10	$2 / 20=0.1$
0.15	$8 / 20=0.4$
0.20	$2 / 20=0.1$
0.30	$4 / 20=0.2$
0.35	$4 / 20=0.2$

OR

Outcomes	x	$f(\mathrm{x})$	
N N	0.10	$\frac{{ }_{2} C_{2} \cdot{ }_{2} C_{0} \cdot{ }_{1} C_{0}}{{ }_{5} C_{2}}$	$=0.1$
N D	0.15	$\frac{{ }_{2} C_{1} \cdot{ }_{2} C_{1} \cdot{ }_{1} C_{0}}{{ }_{5} C_{2}}$	$=0.4$
D D	0.20	$\frac{{ }_{2} C_{0} \cdot{ }_{2} C_{2} \cdot{ }_{1} C_{0}}{{ }_{5} C_{2}}$	$=0.1$
N Q	0.30	$\frac{{ }_{2} C_{1} \cdot{ }_{2} C_{0} \cdot{ }_{1} C_{1}}{{ }_{5} C_{2}}$	$=0.2$
D Q	0.35	$\frac{{ }_{2} C_{0} \cdot{ }_{2} C_{1} \cdot{ }_{1} C_{1}}{{ }_{5} C_{2}}$	$=0.2$
			1.0

x	$f(\mathrm{x})$	$\mathrm{x} \cdot f(\mathrm{x})$	$\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{2} \cdot f(\mathrm{x})$	$\mathrm{x}^{2} \cdot f(\mathrm{x})$
0.10	0.1	0.01	0.00144	0.0010
0.15	0.4	0.06	0.00196	0.0090
0.20	0.1	0.02	0.00004	0.0040
0.30	0.2	0.06	0.00128	0.0180
0.35	0.2	0.07	0.00338	0.0245
	1.0	$\mathbf{0 . 2 2}$	$\mathbf{0 . 0 0 8 1 0}$	0.0565

b) Find the expected value of the amount that Bart gets, $\mathrm{E}(\mathrm{X})$.

$$
\mu_{\mathrm{X}}=\mathrm{E}(\mathrm{X})=\sum_{\text {all } \mathrm{x}} \mathrm{x} \cdot f(\mathrm{x})=\$ \mathbf{0 . 2 2}
$$

c) Find the standard deviation $\operatorname{SD}(\mathrm{X})$.

$$
\begin{aligned}
& \sigma_{X}^{2}=\operatorname{Var}(X)=\sum_{\text {all } x}\left(x-\mu_{X}\right)^{2} \cdot f(x)=\mathbf{0 . 0 0 8 1} . \\
& \quad \text { OR } \\
& \sigma_{X}^{2}=\operatorname{Var}(X)=\sum_{\text {all } X} x^{2} \cdot f(x)-\mu_{X}^{2}=0.0565-(0.22)^{2}=0.0565-0.0484=\mathbf{0 . 0 0 8 1} . \\
& \sigma_{X}=\operatorname{SD}(X)=\sqrt{0.0081}=\$ \mathbf{0 . 0 9} .
\end{aligned}
$$

2. Suppose a random variable X has the following probability distribution:

x	$f(x)$
10	0.20
11	0.40
12	0.30
13	0.10

a) Find the expected value of $\mathrm{X}, \mathrm{E}(\mathrm{X})$.

x	$f(x)$	$x \cdot f(x)$
10	0.2	2.0
11	0.4	4.4
12	0.3	3.6
13	0.1	1.3
1.0	11.3	

$\mu_{\mathrm{X}}=\mathrm{E}(\mathrm{X})=\sum_{\operatorname{all} X} x \cdot f(x)=11.3$.
b) Find the variance of $\mathrm{X}, \operatorname{Var}(\mathrm{X})$.

x	$f(x)$	$\left(x-\mu_{\mathrm{X}}\right)$	$\left(x-\mu_{\mathrm{X}}\right)^{2} \cdot f(x)$
10	0.2	-1.3	$1.69 \cdot 0.2=0.338$
11	0.4	-0.3	$0.09 \cdot 0.4=0.036$
12	0.3	0.7	$0.49 \cdot 0.3=0.147$
13	0.1	1.7	$2.89 \cdot 0.1=0.289$

OR		
x	$f(x)$	$x^{2} \cdot f(x)$
10	0.2	20.0
11	0.4	48.4
12	0.3	43.2
13	0.1	$\frac{16.9}{128.5}$

$$
\sigma_{\mathrm{X}}^{2}=\operatorname{Var}(\mathrm{X})=\sum_{\text {all } X} x^{2} \cdot f(x)-[\mathrm{E}(\mathrm{X})]^{2}=128.5-(11.3)^{2}=\mathbf{0 . 8 1}
$$

c) Find the standard deviation of $\mathrm{X}, \mathrm{SD}(\mathrm{X})$.

$$
\sigma_{X}=\operatorname{SD}(X)=\sqrt{\sigma_{X}^{2}}=\mathbf{0 . 9}
$$

d) Find the cumulative distribution function of $\mathrm{X}, \mathrm{F}(x)=\mathrm{P}(\mathrm{X} \leq x)$.

x	$f(x)$	$\mathrm{F}(x)$
10	0.2	0.2
11	0.4	0.6
12	0.3	0.9
13	0.1	1.0

$\mathrm{F}(x)=\left\{\begin{array}{cc}0 & x<10 \\ 0.2 & 10 \leq x<11 \\ 0.6 & 11 \leq x<12 \\ 0.9 & 12 \leq x<13 \\ 1 & x \geq 13\end{array}\right.$

3. \quad Suppose $E(X)=7, S D(X)=3$.
a) $\quad Y=2 X+3$. Find $E(Y)$ and $S D(Y)$.

$$
\mathrm{E}(\mathrm{Y})=2 \mathrm{E}(\mathrm{X})+3=\mathbf{1 7 .} \quad \mathrm{SD}(\mathrm{Y})=|2| \mathrm{SD}(\mathrm{X})=\mathbf{6}
$$

b) $\quad W=5-2 X$. Find $E(W)$ and $S D(W)$.

$$
\mathrm{E}(\mathrm{~W})=5-2 \mathrm{E}(\mathrm{X})=-\mathbf{9} . \quad \mathrm{SD}(\mathrm{Y})=|-2| \mathrm{SD}(\mathrm{X})=\mathbf{6} .
$$

31/2. Suppose a discrete random variable X has the following probability distribution:

$$
f(x)=\left(\frac{1}{2}\right)^{x}, \quad x=1,2,3, \ldots
$$

a) Verify that this is a valid probability distribution.

- $f(x) \geq 0 \quad \forall x$
- $\sum_{\text {all } X} f(x)=1$

$$
\sum_{x=1}^{\infty}\left(\frac{1}{2}\right)^{x}=\frac{\text { first term }}{1-\text { base }}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1
$$

b) Find $\mathrm{P}(\mathrm{X}$ is divisible by 3$)$.
$P(X$ is divisible by 3$)=P(3)+P(6)+P(9)+P(12)+\ldots$

$$
=\frac{1}{2^{3}}+\frac{1}{2^{6}}+\frac{1}{2^{9}}+\frac{1}{2^{12}}+\ldots=\sum_{k=1}^{\infty}\left(\frac{1}{8}\right)^{k}=\frac{1}{8} \cdot \frac{1}{1-1 / 8}=\frac{1}{7} .
$$

c) Find $\mathrm{P}(\mathrm{X}$ is divisible by $3 \mid \mathrm{X}$ is divisible by 2).
$\mathrm{P}(\mathrm{X}$ is divisible by $3 \mid \mathrm{X}$ is divisible by 2)

$$
\begin{aligned}
& =\frac{\mathrm{P}(\mathrm{X} \text { is divisible by } 3 \cap \mathrm{X} \text { is divisible by } 2)}{\mathrm{P}(\mathrm{X} \text { is divisible by } 2)} \\
& =\frac{\mathrm{P}(\mathrm{X} \text { is divisible by } 6)}{\mathrm{P}(\mathrm{X} \text { is divisible by } 2)}
\end{aligned}
$$

$P(X$ is divisible by 2$)=P(2)+P(4)+P(6)+P(8)+\ldots$

$$
=\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\frac{1}{2^{8}}+\ldots=\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{1}{4} \cdot \frac{1}{1-1 / 4}=\frac{1}{3} .
$$

$\mathrm{P}(\mathrm{X}$ is divisible by 6$)=\mathrm{P}(6)+\mathrm{P}(12)+\mathrm{P}(18)+\mathrm{P}(24)+\ldots$

$$
=\frac{1}{2^{6}}+\frac{1}{2^{12}}+\frac{1}{2^{18}}+\frac{1}{2^{24}}+\ldots=\sum_{k=1}^{\infty}\left(\frac{1}{64}\right)^{k}=\frac{1}{64} \cdot \frac{1}{1-1 / 64}=\frac{1}{63} .
$$

$\mathrm{P}(\mathrm{X}$ is divisible by $3 \mid \mathrm{X}$ is divisible by 2)

$$
\begin{aligned}
& =\frac{\mathrm{P}(\mathrm{X} \text { is divisible by } 3 \cap \mathrm{X} \text { is divisible by } 2)}{\mathrm{P}(\mathrm{X} \text { is divisible by } 2)} \\
& =\frac{\mathrm{P}(\mathrm{X} \text { is divisible by } 6)}{\mathrm{P}(\mathrm{X} \text { is divisible by } 2)}=\frac{1 / 63}{1 / 3}=\frac{\mathbf{1}}{\mathbf{2 1}} .
\end{aligned}
$$

d) Find E (X).

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\sum_{\text {all } x} x \cdot f(x)=\sum_{x=1}^{\infty} x \cdot\left(\frac{1}{2}\right)^{x}=1 \cdot \frac{1}{2^{1}}+2 \cdot \frac{1}{2^{2}}+3 \cdot \frac{1}{2^{3}}+4 \cdot \frac{1}{2^{4}}+\ldots \\
& \frac{1}{2} \mathrm{E}(\mathrm{X}) \\
& \Rightarrow \quad=\quad 1 \cdot \frac{1}{2^{2}}+2 \cdot \frac{1}{2^{3}}+3 \cdot \frac{1}{2^{4}}+\ldots \\
& \Rightarrow \quad \mathrm{E}(\mathrm{X})=\mathrm{E}(\mathrm{X})-\frac{1}{2} \mathrm{E}(\mathrm{X})=1 \cdot \frac{1}{2^{1}}+1 \cdot \frac{1}{2^{2}}+1 \cdot \frac{1}{2^{3}}+1 \cdot \frac{1}{2^{4}}+\ldots=1 . \\
& \Rightarrow \quad \mathrm{X})=2 .
\end{aligned}
$$

e) Find the cumulative distribution function of $\mathrm{X}, \mathrm{F}(x)=\mathrm{P}(\mathrm{X} \leq x)$.

For $k=1,2,3, \ldots$,

$$
\begin{aligned}
P(X>k) & =f(k+1)+f(k+2)+f(k+3)+f(k+4)+\ldots \\
& =\frac{1}{2^{k+1}}+\frac{1}{2^{k+2}}+\frac{1}{2^{k+3}}+\frac{1}{2^{k+4}+\ldots} \\
& =\frac{\text { first term }}{1-\text { base }}=\frac{\frac{1}{2^{k+1}}}{1-\frac{1}{2}}=\frac{1}{2^{k}} .
\end{aligned}
$$

$\mathrm{P}(\mathrm{X}>k)=1-\mathrm{P}(\mathrm{X} \leq k)$.
$\Rightarrow \quad \mathrm{P}(\mathrm{X} \leq k)=1-\frac{1}{2^{k}}$.
$\Rightarrow \quad \mathrm{F}(x)=\mathrm{P}(\mathrm{X} \leq x)=\left\{\begin{array}{cc}0 & x<1 \\ 1-\frac{1}{2^{k}} & k \leq x<k+1 \\ & k=1,2,3, \ldots\end{array}\right.$
4. Suppose a discrete random variable X has the following probability distribution:

$$
\mathrm{P}(\mathrm{X}=0)=2-\sqrt{e}, \quad \mathrm{P}(\mathrm{X}=k)=\frac{1}{2^{k} \cdot k!}, \quad k=1,2,3, \ldots
$$

a) Find E (X).

$$
\begin{aligned}
\mathrm{E}(\mathrm{X}) & =\sum_{\mathrm{all} x} x \cdot f(x)=0 \cdot\left(2-e^{1 / 2}\right)+\sum_{k=1}^{\infty} k \cdot \frac{1}{2^{k} \cdot k!}=\sum_{k=1}^{\infty} \frac{1}{2^{k} \cdot(k-1)!} \\
& =\frac{1}{2} \cdot \sum_{k=1}^{\infty} \frac{1}{2^{k-1} \cdot(k-1)!}=\frac{1}{2} \cdot \sum_{n=0}^{\infty} \frac{1}{2^{n} \cdot n!}=\frac{e^{1 / 2}}{2}
\end{aligned}
$$

b) Find $\operatorname{Var}(\mathrm{X})$.

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X}(\mathrm{X}-1))=\sum_{k=2}^{\infty} k \cdot(k-1) \cdot \frac{1}{2^{k} \cdot k!}=\sum_{k=2}^{\infty} \frac{1}{2^{k} \cdot(k-2)!} \\
& \quad=\frac{1}{4} \cdot \sum_{k=2}^{\infty} \frac{1}{2^{k-2} \cdot(k-2)!}=\frac{1}{4} \cdot \sum_{n=0}^{\infty} \frac{1}{2^{n} \cdot n!}=\frac{e^{1 / 2}}{4} . \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=\mathrm{E}(\mathrm{X}(\mathrm{X}-1))+\mathrm{E}(\mathrm{X})=\frac{3}{4} \cdot e^{1 / 2} . \\
& \operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}=\frac{3}{4} \cdot e^{1 / 2}-\frac{1}{4} \cdot e .
\end{aligned}
$$

