1. Homer Simpson is going to Moe's Tavern for some *Flaming Moe*'s. Let X denote the number of *Flaming Moe*'s that Homer Simpson will drink. Suppose X has the following probability distribution:

f(x)
0.1
0.2
0.3
0.3

a) Find the missing probability f(4) = P(X = 4).

- b) Find the probability $P(X \ge 1)$.
- c) Find the probability $P(X \ge 1 | X < 3)$.
- d) Compute the expected value of X, E(X).
- e) Compute the standard deviation of X, SD(X).
- 1. (continued)

Suppose each *Flaming Moe* costs \$1.50, and there is a cover charge of \$1.00 at the door. Let Y denote the amount of money Homer Simpson spends at the bar. Then $Y = 1.50 \cdot X + 1.00$.

- f) Find the probability that Homer would spend over \$5.00.
- g) Find the expected amount of money that Homer Simpson would spend, E(Y).
- h) Find the standard deviation for the amount of money that Homer Simpson would spend, SD(Y).

1. Homer Simpson is going to Moe's Tavern for some *Flaming Moe*'s. Let X denote the number of *Flaming Moe*'s that Homer Simpson will drink. Suppose X has the the following probability distribution:

x	f(x)	xf(x)	$x^2 f(x)$
0	0.1	0.0	0.0
1	0.2	0.2	0.2
2	0.3	0.6	1.2
3	0.3	0.9	2.7
4	0.1	0.4	1.6
	1.0	2.1	5.7

a) Find the missing probability
$$f(4) = P(X = 4)$$
.

f(4) = 1 - [0.1 + 0.2 + 0.3 + 0.3] = 0.10.

b) Find the probability $P(X \ge 1)$.

 $P(X \ge 1) = 0.90.$

c) Find the probability $P(X \ge 1 | X < 3)$.

$$P(X \ge 1 | X < 3) = \frac{P(X \ge 1 \cap X < 3)}{P(X < 3)} = \frac{0.5}{0.6} \approx 0.8333.$$

d) Compute the expected value of X, E(X).

$$E(X) = \sum_{\text{all } x} x \cdot f(x) = 2.1.$$

e) Compute the standard deviation of X, SD(X).

Var(X) = E(X²) – [E(X)]² = 5.7 – (2.1)² = 1.29. SD(X) = $\sqrt{1.29} \approx 1.1358$.

1. (continued)

Suppose each *Flaming Moe* costs \$1.50, and there is a cover charge of \$1.00 at the door. Let Y denote the amount of money Homer Simpson spends at the bar. Then $Y = 1.50 \cdot X + 1.00$.

f) Find the probability that Homer would spend over \$5.00.

x	У	f(x) = f(y)
0	\$1.00	0.10
1	\$2.50	0.20
2	\$4.00	0.30
3	\$5.50	0.30
4	\$7.00	0.10
		1.00

$$P(Y > $5.00) = P(X \ge 3) = 0.40.$$

g) Find the expected amount of money that Homer Simpson would spend, E(Y).

 $E(Y) = 1.50 \cdot E(X) + 1.00 =$ **\$4.15**.

(On average, Homer drinks 2.1 *Flaming Moe*'s per visit, his expected payment for the drinks is \$3.15. His expected total payment is \$4.15 since he has to pay \$1.00 for the cover charge.)

OR

x	У	f(x) = f(y)	$y \cdot f(y)$
0	\$1.00	0.10	0.10
1	\$2.50	0.20	0.50
2	\$4.00	0.30	1.20
3	\$5.50	0.30	1.65
4	\$7.00	0.10	0.70
		1.00	4.15

$$E(Y) = \sum_{\text{all } y} y \cdot f(y) = \$4.15.$$

Find the standard deviation for the amount of money that Homer Simpson would h) spend, SD(Y).

 $SD(Y) = |1.50| \cdot SD(X) \approx$ **\$1.7037**.

OR

<i>x</i>	У	f(x) = f(y)	$y^2 \cdot f(y)$
0	\$1.00	0.10	0.100
1	\$2.50	0.20	1.250
2	\$4.00	0.30	4.800
3	\$5.50	0.30	9.075
4	\$7.00	0.10	4.900
		1.00	20.125

 $SD(Y) = \sqrt{2.9025} \approx$ **\$1.7037**.