1. Homer Simpson is going to Moe's Tavern for some Flaming Moe's. Let X denote the number of Flaming Moe's that Homer Simpson will drink. Suppose X has the following probability distribution:

x	$f(x)$
0	0.1
1	0.2
2	0.3
3	0.3
4	

a) Find the missing probability $f(4)=\mathrm{P}(\mathrm{X}=4)$.
b) Find the probability $\mathrm{P}(\mathrm{X} \geq 1)$.
c) Find the probability $\mathrm{P}(\mathrm{X} \geq 1 \mid \mathrm{X}<3)$.
d) Compute the expected value of $\mathrm{X}, \mathrm{E}(\mathrm{X})$.
e) Compute the standard deviation of $\mathrm{X}, \mathrm{SD}(\mathrm{X})$.

1. (continued)

Suppose each Flaming Moe costs $\$ 1.50$, and there is a cover charge of $\$ 1.00$ at the door. Let Y denote the amount of money Homer Simpson spends at the bar. Then $\mathrm{Y}=1.50 \cdot \mathrm{X}+1.00$.
f) Find the probability that Homer would spend over $\$ 5.00$.
g) Find the expected amount of money that Homer Simpson would spend, E(Y).
h) Find the standard deviation for the amount of money that Homer Simpson would spend, $\mathrm{SD}(\mathrm{Y})$.

1. Homer Simpson is going to Moe's Tavern for some Flaming Moe's. Let X denote the number of Flaming Moe's that Homer Simpson will drink. Suppose X has the the following probability distribution:

x	$f(x)$	$x f(x)$	$x^{2} f(x)$
0	0.1	0.0	0.0
1	0.2	0.2	0.2
2	0.3	0.6	1.2
3	0.3	0.9	2.7
4	0.1	0.4	1.6
	1.0	2.1	5.7

a) Find the missing probability $f(4)=\mathrm{P}(\mathrm{X}=4)$.
$f(4)=1-[0.1+0.2+0.3+0.3]=\mathbf{0 . 1 0}$.
b) Find the probability $\mathrm{P}(\mathrm{X} \geq 1)$.
$P(X \geq 1)=0.90$.
c) Find the probability $\mathrm{P}(\mathrm{X} \geq 1 \mid \mathrm{X}<3)$.
$\mathrm{P}(\mathrm{X} \geq 1 \mid \mathrm{X}<3)=\frac{\mathrm{P}(\mathrm{X} \geq 1 \cap \mathrm{X}<3)}{\mathrm{P}(\mathrm{X}<3)}=\frac{0.5}{0.6} \approx \mathbf{0 . 8 3 3 3}$.
d) Compute the expected value of $\mathrm{X}, \mathrm{E}(\mathrm{X})$.
$\mathrm{E}(\mathrm{X})=\sum_{\text {all } \mathrm{x}} \mathrm{x} \cdot f(\mathrm{x})=\mathbf{2 . 1}$.
e) Compute the standard deviation of $\mathrm{X}, \mathrm{SD}(\mathrm{X})$.
$\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}=5.7-(2.1)^{2}=1.29$.
$\mathrm{SD}(\mathrm{X})=\sqrt{1.29} \approx \mathbf{1 . 1 3 5 8}$.

1. (continued)

Suppose each Flaming Moe costs $\$ 1.50$, and there is a cover charge of $\$ 1.00$ at the door. Let Y denote the amount of money Homer Simpson spends at the bar. Then $\mathrm{Y}=1.50 \cdot \mathrm{X}+1.00$.
f) Find the probability that Homer would spend over $\$ 5.00$.

x	y	$f(x)=f(y)$
0	$\$ 1.00$	0.10
1	$\$ 2.50$	0.20
2	$\$ 4.00$	0.30
3	$\$ 5.50$	0.30
4	$\$ 7.00$	0.10

$\mathrm{P}(\mathrm{Y}>\$ 5.00)=\mathrm{P}(\mathrm{X} \geq 3)=\mathbf{0 . 4 0}$.
g) Find the expected amount of money that Homer Simpson would spend, E(Y).
$E(Y)=1.50 \cdot E(X)+1.00=\$ 4.15$.
(On average, Homer drinks 2.1 Flaming Moe's per visit, his expected payment for the drinks is $\$ 3.15$. His expected total payment is $\$ 4.15$ since he has to pay $\$ 1.00$ for the cover charge.)

OR			
x	y	$f(x)=f(y)$	$y \cdot f(y)$
0	$\$ 1.00$	0.10	0.10
1	$\$ 2.50$	0.20	0.50
2	$\$ 4.00$	0.30	1.20
3	$\$ 5.50$	0.30	1.65
4	$\$ 7.00$	0.10	0.70
$\mathrm{E}(\mathrm{Y})=\sum_{\text {all } y} y \cdot f(y)=\$ \mathbf{4 . 1 5}$.			

h) Find the standard deviation for the amount of money that Homer Simpson would spend, $\mathrm{SD}(\mathrm{Y})$.

$$
\mathrm{SD}(\mathrm{Y})=|1.50| \cdot \mathrm{SD}(\mathrm{X}) \approx \mathbf{\$ 1 . 7 0 3 7}
$$

OR			
x	y	$f(x)=f(y)$	$y^{2} \cdot f(y)$
0	$\$ 1.00$	0.10	0.100
1	$\$ 2.50$	0.20	1.250
2	$\$ 4.00$	0.30	4.800
3	$\$ 5.50$	0.30	9.075
4	$\$ 7.00$	0.10	4.900
		1.00	20.125

$\operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=20.125-(4.15)^{2}$

$$
=20.125-17.2225=2.9025 .
$$

$\mathrm{SD}(\mathrm{Y})=\sqrt{2.9025} \approx \mathbf{\$ 1 . 7 0 3 7}$.

