A random variable associates a numerical value with each outcome of a random experiment.

A random variable is said to be discrete if it has either a finite number of values or infinitely many values that can be arranged in a sequence.

If a random variable represents some measurement on a continuous scale and therefore capable of assuming all values in an interval, it is called a continuous random variable.

The probability distribution of a discrete random variable is a list of all its distinct numerical values along with their associated probabilities:

x	$f(x)$			
x_{1}	$f\left(x_{1}\right)$			
x_{2}	$f\left(x_{2}\right)$!	for each x,	
x_{3}	$f\left(x_{3}\right)$			$0 \leq f(x) \leq 1$.
\cdot	\cdot			
\cdot	\cdot	!	$2)$	$\sum_{\text {all } x} f(x)=1$.

Often a formula can be used in place of a detailed list.

1. A balanced (fair) coin is tossed twice. Let X denote the number of H's. Construct the probability distribution of X.
2. Suppose a random variable X has the following probability distribution:

x	$f(x)$
10	0.20
11	0.40
12	0.30
13	0.10

a) Find the expected value of $\mathrm{X}, \mathrm{E}(\mathrm{X})$.

x	$f(x)$	$x \cdot f(x)$
10	0.2	
11	0.4	
12	0.3	
13	0.1	

$$
\mathrm{E}(\mathrm{X})=\mu_{\mathrm{X}}=\sum_{\operatorname{all} x} x \cdot f(x)
$$

b) Find the variance of $\mathrm{X}, \operatorname{Var}(\mathrm{X})$.

x	$f(x)$	$\left(x-\mu_{\mathrm{X}}\right)$	$\left(x-\mu_{\mathrm{X}}\right)^{2} \cdot f(x)$
10	0.2		
11	0.4		
12	0.3		
13	0.1		

$$
\begin{aligned}
\operatorname{Var}(\mathrm{X}) & =\sigma_{\mathrm{X}}^{2}=\sum_{\text {all } x}\left(x-\mu_{\mathrm{X}}\right)^{2} \cdot f(x) \\
& =\mathrm{E}\left[\left(\mathrm{X}-\mu_{\mathrm{X}}\right)^{2}\right]
\end{aligned}
$$

x	$f(x)$	$x^{2} \cdot f(x)$
10	0.2	
11	0.4	
12	0.3	
13	0.1	

$$
\begin{aligned}
\operatorname{Var}(\mathrm{X}) & =\sigma_{\mathrm{X}}^{2}=\sum_{\text {all } x} x^{2} \cdot f(x)-[\mathrm{E}(\mathrm{X})]^{2} \\
& =\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}
\end{aligned}
$$

c) Find the standard deviation of $\mathrm{X}, \mathrm{SD}(\mathrm{X})$.

$$
\mathrm{SD}(\mathrm{X})=\sigma_{\mathrm{X}}=\sqrt{\sigma_{\mathrm{X}}^{2}}
$$

d) Find the cumulative distribution function of $\mathrm{X}, \mathrm{F}(x)=\mathrm{P}(\mathrm{X} \leq x)$.

x	$f(x)$	$\mathrm{F}(x)$
10	0.2	
11	0.4	
12	0.3	
13	0.1	

$$
\begin{array}{ll}
\mathrm{E}(g(\mathrm{X}))=\sum_{\text {all } x} g(x) \cdot f(x) \quad & \mathbf{E}(\boldsymbol{a} \cdot \mathbf{X}+\boldsymbol{b})=\boldsymbol{a} \cdot \mathbf{E}(\mathbf{X})+\boldsymbol{b} . \\
& \operatorname{Var}(\boldsymbol{a} \cdot \mathbf{X}+\boldsymbol{b})=\boldsymbol{a}^{2} \cdot \operatorname{Var}(\mathrm{X}) . \\
& \text { SD }(\boldsymbol{a} \cdot \mathbf{X}+\boldsymbol{b})=|\boldsymbol{a}| \cdot \mathbf{S D}(\mathbf{X}) .
\end{array}
$$

3. \quad Suppose $E(X)=7, S D(X)=3$.
a) $\quad Y=2 X+3$. Find $E(Y)$ and $S D(Y)$.
b) $\quad W=5-2 X$. Find $E(W)$ and $S D(W)$.
4. Suppose a discrete random variable X has the following probability distribution:

$$
\mathrm{P}(\mathrm{X}=0)=2-\sqrt{e}, \quad \mathrm{P}(\mathrm{X}=k)=\frac{1}{2^{k} \cdot k!}, \quad k=1,2,3, \ldots
$$

a) Find E (X).
b) Find $\operatorname{Var}(\mathrm{X})$.

