STAT 400 UIUC

A **random variable** associates a numerical value with each outcome of a random experiment.

A random variable is said to be **discrete** if it has either a finite number of values or infinitely many values that can be arranged in a sequence.

If a random variable represents some measurement on a continuous scale and therefore capable of assuming all values in an interval, it is called a **continuous** random variable.

The **probability distribution** of a discrete random variable is a list of all its distinct numerical values along with their associated probabilities:

x	f(x)			
<i>x</i> ₁	$f(x_1)$		1)	
x_2	$f(x_2)$	٢	1)	for each <i>x</i> ,
<i>x</i> ₃	$f(x_3)$	•		$0 \le f(x) \le 1.$
•		1	2)	$\sum f(x) = 1.$
r	$f(\mathbf{x})$	-		all <i>x</i>
$^{\mathcal{A}}n$	$\int (x_n)$			
	1.00			

Often a formula can be used in place of a detailed list.

 A balanced (fair) coin is tossed twice. Let X denote the number of H's. Construct the probability distribution of X.

x	f(x)
10	0.20
11	0.40
12	0.30
13	0.10

2. Suppose a random variable X has the following probability distribution:

a) Find the expected value of X, E(X).

x	f(x)	$x \cdot f(x)$
10	0.2	
11	0.4	
12	0.3	
13	0.1	

$$E(X) = \mu_X = \sum_{\text{all } x} x \cdot f(x)$$

b) Find the variance of X, Var(X).

x	f(x)	$(x - \mu_X)$	$(x-\mu_X)^2 \cdot f(x)$
10	0.2		
11	0.4		
12	0.3		
13	0.1		

$$Var(X) = \sigma_X^2 = \sum_{\text{all } x} (x - \mu_X)^2 \cdot f(x)$$
$$= E[(X - \mu_X)^2]$$

x	f(x)	$x^2 \cdot f(x)$
10	0.2	
11	0.4	
12	0.3	
13	0.1	

$$Var(X) = \sigma_X^2 = \sum_{\text{all } x} x^2 \cdot f(x) - [E(X)]^2$$
$$= E(X^2) - [E(X)]^2$$

c) Find the standard deviation of X, SD(X).

$$SD(X) = \sigma_X = \sqrt{\sigma_X^2}$$

d)	Find the cumulative	distribution	function	of X,	F(x)) = P ($(X \leq x)$	•
----	---------------------	--------------	----------	-------	------	---------	--------------	---

X	f(x)	F(x)
10	0.2	
11	0.4	
12	0.3	
13	0.1	

$$E(g(X)) = \sum_{all \ X} g(x) \cdot f(x) \qquad E(a \cdot X + b) = a \cdot E(X) + b.$$

$$Var(a \cdot X + b) = a^{2} \cdot Var(X).$$

$$SD(a \cdot X + b) = |a| \cdot SD(X).$$

$$SD(a \cdot X + b) = |a| \cdot SD(X)$$

- 3. Suppose E(X) = 7, SD(X) = 3.
- Y = 2 X + 3. Find E(Y) and SD(Y). a)

b) W = 5 - 2 X. Find E(W) and SD(W).

4. Suppose a discrete random variable X has the following probability distribution:

P(X=0) =
$$2 - \sqrt{e}$$
, P(X=k) = $\frac{1}{2^k \cdot k!}$, k = 1, 2, 3, ...

Find E(X). a)

Find Var(X). b)