1. In Neverland, men constitute 60% of the labor force. The rates of unemployment are 6.0% and 4.5% among males and females, respectively. A person is selected at random from Neverland's labor force.
$P(M)=0.60, \quad P(U \mid M)=0.06, \quad P(U \mid F)=0.045$.
a) What is the probability that the person selected is a male and is unemployed?
$P(M \cap U)=P(M) \times P(U \mid M)=0.60 \times 0.06=0.036$.
b) What is the probability that the person selected is a female and is unemployed? $\mathrm{P}(\mathrm{F} \cap \mathrm{U})=\mathrm{P}(\mathrm{F}) \times \mathrm{P}(\mathrm{U} \mid \mathrm{F})=0.40 \times 0.045=\mathbf{0 . 0 1 8}$.

	Unemployed	Employed	Total
Male	0.036	0.564	0.60
Female	0.018	0.382	0.40
Total	0.054	0.946	1.00

c) What is the probability that the person selected is unemployed?
$P(U)=0.036+0.018=\mathbf{0 . 0 5 4}$.
OR
Law of Total Probability:
$P(U)=P(M) \times P(U \mid M)+P(F) \times P(U \mid F)=0.60 \times 0.06+0.40 \times 0.045=\mathbf{0 . 0 5 4}$.
d) Suppose the person selected is unemployed. What is the probability that a male was selected?
$P(M \mid U)=0.036 / 0.054=2 / 3$.
OR
Bayes' Theorem:
$\mathrm{P}(\mathrm{M} \mid \mathrm{U})=\frac{\mathrm{P}(\mathrm{M}) \times \mathrm{P}(\mathrm{U} \mid \mathrm{M})}{\mathrm{P}(\mathrm{M}) \times \mathrm{P}(\mathrm{U} \mid \mathrm{M})+\mathrm{P}(\mathrm{F}) \times \mathrm{P}(\mathrm{U} \mid \mathrm{F})}=\frac{0.60 \times 0.06}{0.60 \times 0.06+0.40 \times 0.045}=\frac{\mathbf{2}}{\mathbf{3}}$.
2. In a presidential race in Neverland, the incumbent Democrat (D) is running against a field of four Republicans ($R_{1}, R_{2}, R_{3}, R_{4}$) seeking the nomination.
Political pundits estimate that the probabilities of R_{1}, R_{2}, R_{3}, and R_{4} winning the nomination are $0.40,0.30,0.20$, and 0.10 , respectively. Furthermore, results from a variety of polls are suggesting that D would have a 55% chance of defeating R_{1} in the general election, a 70% chance of defeating R_{2}, a 60% chance of defeating R_{3}, and an 80% chance of defeating R_{4}. Assuming all these estimates to be accurate, what are the chances that D will be a two-term president?

$$
\begin{array}{llll}
\mathrm{P}\left(R_{1}\right)=0.40, & \mathrm{P}\left(R_{2}\right)=0.30, & \mathrm{P}\left(R_{3}\right)=0.20, & \mathrm{P}\left(R_{4}\right)=0.10, \\
\mathrm{P}\left(\mathrm{~W} \mid R_{1}\right)=0.55, & \mathrm{P}\left(\mathrm{~W} \mid R_{2}\right)=0.70, & \mathrm{P}\left(\mathrm{~W} \mid R_{3}\right)=0.60, & \mathrm{P}\left(\mathrm{~W} \mid R_{4}\right)=0.80 .
\end{array}
$$

Law of Total Probability:

$$
\begin{aligned}
\mathrm{P}(\mathrm{~W})= & \mathrm{P}\left(\mathrm{~W} \cap R_{1}\right)+\mathrm{P}\left(\mathrm{~W} \cap R_{2}\right)+\mathrm{P}\left(\mathrm{~W} \cap R_{3}\right)+\mathrm{P}\left(\mathrm{~W} \cap R_{4}\right) \\
= & \mathrm{P}\left(R_{1}\right) \mathrm{P}\left(\mathrm{~W} \mid R_{1}\right)+\mathrm{P}\left(R_{2}\right) \mathrm{P}\left(\mathrm{~W} \mid R_{2}\right) \\
& \quad+\mathrm{P}\left(R_{3}\right) \mathrm{P}\left(\mathrm{~W} \mid R_{3}\right)+\mathrm{P}\left(R_{4}\right) \mathrm{P}\left(\mathrm{~W} \mid R_{4}\right) \\
= & 0.40 \cdot 0.55+0.30 \cdot 0.70+0.20 \cdot 0.60+0.10 \cdot 0.80=\mathbf{0 . 6 3} .
\end{aligned}
$$

	R_{1}	R_{2}	R_{3}	R_{4}	
W	$0.40 \cdot 0.55$ 0.22	$0.30 \cdot 0.70$ 0.21	$0.20 \cdot 0.60$ 0.12	$0.10 \cdot 0.80$ 0.08	$\mathbf{0 . 6 3}$
L	0.18	0.09	0.08	0.02	0.37
	0.40	0.30	0.20	0.10	1.00

3. In Anytown, 10% of the people leave their keys in the ignition of their cars. Anytown's police records indicate that 4.2% of the cars with keys left in the ignition are stolen. On the other hand, only 0.2% of the cars without keys left in the ignition are stolen. Suppose a car in Anytown is stolen. What is the probability that the keys were left in the ignition?
$P($ Keys $)=0.10$,
$P($ Stolen \mid Keys $)=0.042$.
Need P(Keys \mid Stolen $)=$?

Bayes' Theorem:
$\mathrm{P}($ Keys \mid Stolen $)=\frac{\mathrm{P}(\text { Keys }) \times \mathrm{P}(\text { Stolen } \mid \text { Keys })}{\mathrm{P}(\text { Keys }) \times \mathrm{P}(\text { Stolen } \mid \text { Keys })+\mathrm{P}(\text { Keys' }) \times \mathrm{P}(\text { Stolen } \mid \text { Keys' })}$

$$
=\frac{0.10 \times 0.042}{0.10 \times 0.042+0.90 \times 0.002}=\mathbf{0 . 7 0} \text {. }
$$

OR

	Stolen	Stolen'	
Keys	$0.042 \cdot 0.10$ 0.0042	0.0958	0.10
Keys'	$0.002 \cdot 0.90$ 0.0018	0.8982	0.90
	0.0060	0.9940	1.00

$\mathrm{P}($ Keys \mid Stolen $)=\frac{\mathrm{P}(\text { Keys } \cap \text { Stolen })}{\mathrm{P}(\text { Stolen })}=\frac{0.0042}{0.0060}=\mathbf{0 . 7 0}$.

OR

$$
\begin{aligned}
& \mathrm{P}(\text { Stolen })=0.0042+0.0018=0.0060 . \\
& \mathrm{P}(\text { Keys } \mid \text { Stolen })=\frac{\mathrm{P}(\text { Keys } \cap \text { Stolen })}{\mathrm{P}(\text { Stolen })}=\frac{0.0042}{0.0060}=\mathbf{0 . 7 0} .
\end{aligned}
$$

31/4. A warehouse receives widgets from three different manufacturers, A (50\%), B (30\%), and C (20\%). Suppose that 2\% of the widgets coming from A are defective, as are 4% of the widgets coming from B, and 7% coming from C.
a) Find the probability that a widget selected at random at this warehouse is defective.

Law of Total Probability:

$$
\begin{aligned}
P(D) & =P(A) \times P(D \mid A)+P(B) \times P(D \mid B)+P(C) \times P(D \mid C) \\
& =0.50 \times 0.02+0.30 \times 0.04+0.20 \times 0.07 \\
& =0.010+0.012+0.014=\mathbf{0 . 0 3 6} .
\end{aligned}
$$

b) Suppose a widget that was selected at random is found to be defective. What is the probability that it came from manufacturer A? Manufacturer B? Manufacturer C?
$\mathrm{P}(\mathrm{A} \mid \mathrm{D})=\frac{0.010}{0.036}=\frac{\mathbf{5}}{\mathbf{1 8}}$.
$P(B \mid D)=\frac{0.012}{0.036}=\frac{\mathbf{6}}{\mathbf{1 8}}$.
$\mathrm{P}(\mathrm{C} \mid \mathrm{D})=\frac{0.014}{0.036}=\frac{\mathbf{7}}{\mathbf{1 8}}$.

3 $1 / 2$. Seventy percent of the light aircraft that disappear while in flight in Neverland are subsequently discovered. Of the aircraft that are discovered, 60% have an emergency locator, whereas 90% of the aircraft not discovered do not have such a locator. Suppose a light aircraft that has just disappeared has an emergency locator. What is the probability that it will not be discovered?

P (Discovered) = 0.70,
P (Locator \mid Discovered $)=0.60$.
$P\left(\right.$ Discovered $\left.{ }^{\prime}\right)=1-0.70=0.30$.
P(Locator ${ }^{\prime} \mid$ Discovered $\left.{ }^{\prime}\right)=0.90$.

Need P (Discovered ' \mid Locator $)=$?

	Locator	Locator'	
Discovered	$0.60 \cdot 0.70$ 0.42	0.28	0.70
Discovered '	0.03	$0.90 \cdot 0.30$ 0.27	0.30
	0.45	0.55	1.00

$\mathrm{P}\left(\right.$ Discovered ${ }^{\prime} \mid$ Locator $)=\frac{\mathrm{P}\left(\text { Discovered' }^{\prime} \cap \text { Locator }\right)}{\mathrm{P}(\text { Locator })}=\frac{0.03}{0.45}=\frac{\mathbf{1}}{\mathbf{1 5}} \approx \mathbf{0 . 0 6 6 6 7}$.

4. In a certain population, the proportion of individuals who have a particular disease is 0.025 . A test for the disease is positive in 94% of the people who have the disease and in 4% of the people who do not.
$\mathrm{P}(\mathrm{D})=0.025$,
$\mathrm{P}(+\mid \mathrm{D})=0.94$,
$P\left(+\mid D^{\prime}\right)=0.04$.
a) Find the probability of receiving a positive reaction from this test.

Need $P(+)=$?

	+	-	
\mathbf{D}	$0.025 \cdot 0.94$ 0.0235	0.0015	0.025
\mathbf{D}^{\prime}	$0.975 \cdot 0.04$ 0.0390	0.9360	0.975
	$\mathbf{0 . 0 6 2 5}$	0.9375	1.000

OR
Law of Total Probability:
$\mathrm{P}(+)=\mathrm{P}(\mathrm{D}) \times \mathrm{P}(+\mid \mathrm{D})+\mathrm{P}\left(\mathrm{D}^{\prime}\right) \times \mathrm{P}\left(+\mid \mathrm{D}^{\prime}\right)=0.025 \times 0.94+0.975 \times 0.04=\mathbf{0 . 0 6 2 5}$.
b) If a person received a positive reaction from this test, what is the probability that he/she has the disease?
$\mathrm{P}(\mathrm{D} \mid+)=0.0235 / 0.0625=\mathbf{0 . 3 7 6}$.
OR
Bayes' Theorem:
$\mathrm{P}(\mathrm{D} \mid+)=\frac{0.025 \times 0.94}{0.025 \times 0.94+0.975 \times 0.04}=\mathbf{0 . 3 7 6}$.
c) If a person received a negative reaction from this test, what is the probability that he/she doesn't have the disease?
$P\left(D^{\prime} \mid-\right)=0.9360 / 0.9375=\mathbf{0 . 9 9 8 4}$.
OR
Bayes' Theorem:
$P\left(D^{\prime} \mid-\right)=\frac{0.975 \times 0.96}{0.025 \times 0.06+0.975 \times 0.96}=\mathbf{0 . 9 9 8 4}$.

