1. In Neverland, men constitute 60% of the labor force. The rates of unemployment are 6.0% and 4.5% among males and females, respectively. A person is selected at random from Neverland's labor force.
a) What is the probability that the person selected is a male and is unemployed?
b) What is the probability that the person selected is a female and is unemployed?

| | Unemployed \quad Employed | Total |
| :---: | :---: | :---: | :---: |
| Male | | |
| Female | | |
| Total | | |

c) What is the probability that the person selected is unemployed?

Law of Total Probability:

$$
\begin{aligned}
\mathbf{P}(\mathbf{A}) & =\mathbf{P}(\mathbf{A} \cap \mathbf{B})+\mathbf{P}\left(\mathbf{A} \cap \mathbf{B}^{\prime}\right) \\
& =\mathbf{P}(\mathbf{B}) \cdot \mathbf{P}(\mathbf{A} \mid \mathbf{B})+\mathbf{P}\left(\mathbf{B}^{\prime}\right) \cdot \mathbf{P}\left(\mathbf{A} \mid \mathbf{B}^{\prime}\right)
\end{aligned}
$$

In general,

$$
\mathbf{P}(\mathbf{A})=\sum_{i=1}^{m} \mathbf{P}\left(\mathbf{B}_{\mathbf{i}}\right) \cdot \mathbf{P}\left(\mathbf{A} \mid \mathbf{B}_{\mathbf{i}}\right)
$$

d) Suppose the person selected is unemployed. What is the probability that a male was selected?

Bayes' Theorem:

$$
\mathbf{P}(\mathbf{B} \mid \mathbf{A})=\frac{\mathbf{P}(\mathbf{B}) \cdot \mathbf{P}(\mathbf{A} \mid \mathbf{B})}{\mathbf{P}(\mathbf{B}) \cdot \mathbf{P}(\mathbf{A} \mid \mathbf{B})+\mathbf{P}\left(\mathbf{B}^{\prime}\right) \cdot \mathbf{P}\left(\mathbf{A} \mid \mathbf{B}^{\prime}\right)}
$$

In general,

$$
\mathbf{P}\left(\mathbf{B}_{\mathbf{k}} \mid \mathbf{A}\right)=\frac{\mathbf{P}\left(\mathbf{B}_{\mathbf{k}}\right) \cdot \mathbf{P}\left(\mathbf{A} \mid \mathbf{B}_{\mathbf{k}}\right)}{\sum_{i=\mathbf{1}}^{m} \mathbf{P}\left(\mathbf{B}_{\mathbf{i}}\right) \cdot \mathbf{P}\left(\mathbf{A} \mid \mathbf{B}_{\mathbf{i}}\right)}, \quad \mathrm{k}=1, \ldots, \mathrm{~m} .
$$

2. In a presidential race in Neverland, the incumbent Democrat (D) is running against a field of four Republicans ($R_{1}, R_{2}, R_{3}, R_{4}$) seeking the nomination. Political pundits estimate that the probabilities of R_{1}, R_{2}, R_{3}, and R_{4} winning the nomination are $0.40,0.30,0.20$, and 0.10 , respectively. Furthermore, results from a variety of polls are suggesting that D would have a 55% chance of defeating R_{1} in the general election, a 70% chance of defeating R_{2}, a 60% chance of defeating R_{3}, and an 80% chance of defeating R_{4}. Assuming all these estimates to be accurate, what are the chances that D will be a two-term president?
3. In Anytown, 10% of the people leave their keys in the ignition of their cars. Anytown's police records indicate that 4.2% of the cars with keys left in the ignition are stolen. On the other hand, only 0.2% of the cars without keys left in the ignition are stolen. Suppose a car in Anytown is stolen. What is the probability that the keys were left in the ignition?
4. In a certain population, the proportion of individuals who have a particular disease is 0.025 . A test for the disease is positive in 94% of the people who have the disease and in 4% of the people who do not.
a) Find the probability of receiving a positive reaction from this test.
b) If a person received a positive reaction from this test, what is the probability that he/she has the disease?
c) If a person received a negative reaction from this test, what is the probability that he/she doesn't have the disease?
