Events A and B are independent if and only if

$$
\begin{gathered}
\mathbf{P}(\mathbf{B} \mid \mathbf{A})=\mathbf{P}(\mathbf{B}) \quad \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\mathbf{P}(\mathbf{A}) \\
\mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathbf{P}(\mathbf{A}) \cdot \mathbf{P}(\mathbf{B})
\end{gathered}
$$

Note that if two events, A and B , are mutually exclusive, then $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$. Therefore, two mutually exclusive events cannot be independent, unless at least one of them has probability 0 .

1. The probability that a randomly selected student at Anytown College owns a bicycle is 0.55 , the probability that a student owns a car is 0.30 , and the probability that a student owns both is 0.10 . Are events \{a student owns a bicycle\} and \{a student owns a car\} independent?
$\mathrm{P}(\mathrm{B} \cap \mathrm{C}) \neq \mathrm{P}(\mathrm{B}) \times \mathrm{P}(\mathrm{C})$.
$0.10 \neq 0.55 \times 0.30$.
B and C are NOT independent.
$11 / 2$. During the first week of the semester, 80% of customers at a local convenience store bought either beer or potato chips (or both). 60% bought potato chips. 30% of the customers bought both beer and potato chips. Are events \{a randomly selected customer bought potato chips\} and \{a randomly selected customer bought beer\} independent?
[Recall that $\mathrm{P}($ Beer $)=0.50$.]
$\mathrm{P}(\mathrm{B} \cap \mathrm{PC})=\mathrm{P}(\mathrm{B}) \times \mathrm{P}(\mathrm{PC})$.
$0.30=0.50 \times 0.60$.
B and PC are independent.

Events A, B and C are independent if and only if

$$
\begin{gathered}
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}), \quad \mathrm{P}(\mathrm{~A} \cap \mathrm{C})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{C}), \quad \mathrm{P}(\mathrm{~B} \cap \mathrm{C})=\mathrm{P}(\mathrm{~B}) \cdot \mathrm{P}(\mathrm{C}), \\
\text { and } \mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B}) \cdot \mathrm{P}(\mathrm{C})
\end{gathered}
$$

13/4. Suppose that a fair coin is tossed twice. Consider $A=\{H$ on the first toss $\}$, $B=\{H$ on the second toss $\}$ and $C=\{$ exactly one H in two tosses $\}$.

S = \{ TT, TH, HT, HH \},
$\mathrm{A}=\{\mathrm{HT}, \mathrm{HH}\}, \quad \mathrm{B}=\{\mathrm{TH}, \mathrm{HH}\}, \quad \mathrm{C}=\{\mathrm{TH}, \mathrm{HT}\}$.
$P(A)=1 / 2, \quad P(B)=1 / 2, \quad P(C)=1 / 2$.
a) Are A and B independent?
$A \cap B=\{H H\}$,
$P(A \cap B)=1 / 4$.
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}) . \quad \mathrm{A}$ and B are independent.
b) Are A and C independent?
$\mathrm{A} \cap \mathrm{C}=\{\mathrm{HT}\}$,
$P(A \cap C)=1 / 4$.
$P(A \cap C)=P(A) \times P(C) . \quad A$ and C are independent.
b) Are B and C independent?

$$
\mathrm{B} \cap \mathrm{C}=\{\mathrm{TH}\}, \quad \mathrm{P}(\mathrm{~B} \cap \mathrm{C})=1 / 4 .
$$

$P(B \cap C)=P(B) \times P(C) . \quad B$ and C are independent.
d) Are A, B and C independent?

Since $\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}) \neq \mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}) \times \mathrm{P}(\mathrm{C}), \mathrm{A}, \mathrm{B}$ and C are not independent, even though A, B and C are pairwise independent.
2. A girl is told by her boyfriend that she is "one in a billion." She has a dimple in her chin, probability $1 / 100$, eyes of different colors, probability $1 / 1,000$, and is absolutely crazy about mathematics, probability $1 / 10,000$.
a) Do these events seem to be independent or dependent?

Independent.
b) Show why the girl is "one in a billion."

$$
1 / 100 \times 1 / 1,000 \times 1 / 10,000=1 / 1,000,000,000=1 / 1 \text { billion } .
$$

3. Bart and Nelson talked Milhouse into throwing water balloons at Principal Skinner. Suppose that Bart hits his target with probability 0.80, Nelson misses 25% of the time, and Milhouse hits the target half the time. Assume that their attempts are independent of each other.
$\mathrm{P}(\mathrm{B})=0.80, \quad \mathrm{P}(\mathrm{N})=0.75, \quad \mathrm{P}(\mathrm{M})=0.50$.
8 possible outcomes (not equally likely):

B	N	M
B	N	M^{\prime}
B	N^{\prime}	M
B' $^{\prime}$	N	M
B	N^{\prime}	M^{\prime}
B' $^{\prime}$	N	M^{\prime}
B' $^{\prime}$	N^{\prime}	M
B' $^{\prime}$	N^{\prime}	M^{\prime}

a) Find the probability that all of them will hit Principal Skinner.
$\mathrm{P}($ all $)=\mathrm{P}(\mathrm{B} \cap \mathrm{N} \cap \mathrm{M})=\mathrm{P}(\mathrm{B}) \times \mathrm{P}(\mathrm{N}) \times \mathrm{P}(\mathrm{M})=0.80 \times 0.75 \times 0.50=\mathbf{0 . 3 0}$.
b) Find the probability that exactly one of the boys will hit Principal Skinner.

$$
\begin{aligned}
& P\left(B \cap N^{\prime} \cap M^{\prime}\right)=P(B) \times P\left(N^{\prime}\right) \times P\left(M^{\prime}\right)=0.80 \times 0.25 \times 0.50=0.100, \\
& P\left(B^{\prime} \cap N \cap M^{\prime}\right)=P\left(B^{\prime}\right) \times P(N) \times P\left(M^{\prime}\right)=0.20 \times 0.75 \times 0.50=0.075 \\
& P\left(B^{\prime} \cap N^{\prime} \cap M\right)=P\left(B^{\prime}\right) \times P\left(N^{\prime}\right) \times P(M)=0.20 \times 0.25 \times 0.50=0.025 \\
& P(\text { exactly one })=0.100+0.075+0.025=\mathbf{0 . 2 0}
\end{aligned}
$$

c) Find the probability that at least one of the boys will hit Principal Skinner.

$$
\begin{aligned}
\mathrm{P}(\text { at least one }) & =1-\mathrm{P}(\text { none })=1-\mathrm{P}\left(\mathrm{~B}^{\prime} \cap \mathrm{N}^{\prime} \cap \mathrm{M}^{\prime}\right) \\
& =1-\mathrm{P}\left(\mathrm{~B}^{\prime}\right) \times \mathrm{P}\left(\mathrm{~N}^{\prime}\right) \times \mathrm{P}\left(\mathrm{M}^{\prime}\right) \\
& =1-0.20 \times 0.25 \times 0.50=\mathbf{0 . 9 7 5}
\end{aligned}
$$

Idea: $\quad \mathrm{P}\left(\right.$ at least one of A_{i} occurs $)=1-\mathrm{P}\left(\right.$ none of A_{i} occurs $)$

$$
\begin{aligned}
& P\left(A_{1} \text { or } A_{2} \text { or } \ldots \text { or } A_{n}\right)=1-P\left(\left(\operatorname{not} A_{1}\right) \text { and }\left(\operatorname{not} A_{2}\right) \text { and } \ldots \text { and }\left(n o t A_{n}\right)\right) \\
& P\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=1-P\left(A_{1}^{\prime} \cap A_{2} \cap \ldots \cap A_{n}^{\prime}\right)
\end{aligned}
$$

For independent events

$$
\begin{aligned}
& P\left(A_{1} \text { or } A_{2} \text { or } \ldots \text { or } A_{n}\right)=1-P\left(\operatorname{not} A_{1}\right) \cdot P\left(\operatorname{not} A_{2}\right) \cdot \ldots \bullet P\left(\operatorname{not} A_{n}\right) \\
& P\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=1-P\left(A_{1}^{\prime}\right) \cdot P\left(A_{2}^{\prime}\right) \cdot \ldots \bullet P\left(A_{n}^{\prime}\right)
\end{aligned}
$$

4. Often On time Parcel Service (OOPS) delivers a package to the wrong address with probability 0.05 on any delivery. Suppose that each delivery is independent of all the others. There were 7 packages delivered on a particular day. What is the probability that at least one of them was delivered to the wrong address?
$\mathrm{P}($ at least one wrong $)=1-\mathrm{P}($ all correct $)=1-(0.95)^{7} \approx \mathbf{0 . 3 0 1 6 6 2 7}$.
5. A major oil company has decided to drill independent test wells in the Alaskan wilderness. The probability of any well producing oil is 0.30 . Find the probability that the fifth well is the first to produce oil.

F	F	F	F	S
0.70	0.70	$0.70 \cdot 0.70$	$0.30=$	$\mathbf{0 . 0 7 2 0 3}$.

51/2. Consider a fair (balanced, symmetric) 6-sided die. Assuming that the outcome of each roll is independent of all other rolls, find the probability that the first " 6 " occurs on the $\mathrm{m}^{\text {th }}$ roll.

$$
[\text { first }(\mathrm{m}-1) \text { rolls }] \quad\left[\mathrm{m}^{\text {th }} \text { roll }\right]
$$

[no " 6 " on the 1 st roll $\cap \ldots \cap$ no " 6 " on the $(m-1)$ th roll] \cap [" 6 " on the $m{ }^{\text {th }}$ roll]

$$
\left(\frac{5}{6}\right)^{\mathrm{m}-1} \quad \times \quad\left(\frac{1}{6}\right)
$$

$5 \mathbf{3} / 4$. Consider a fair (balanced, symmetric) 6-sided die. Assuming that the outcome of each roll is independent of all other rolls, find the probability that " 6 " occurs before an odd outcome.

$$
\begin{aligned}
& P(\text { " } 6 \text { " before odd })=\left(\frac{1}{6}\right)+\left(\frac{2}{6}\right)\left(\frac{1}{6}\right)+\left(\frac{2}{6}\right)^{2}\left(\frac{1}{6}\right)+\ldots+\left(\frac{2}{6}\right)^{k}\left(\frac{1}{6}\right)+\ldots=\sum_{k=0}^{\infty}\left(\frac{2}{6}\right)^{k}\left(\frac{1}{6}\right) \\
& =\left(\frac{1}{6}\right) \cdot \frac{1}{1-\frac{2}{6}}=\frac{\mathbf{1}}{4}=\mathbf{0 . 2 5 .}
\end{aligned}
$$

OR
Four "relevant" outcomes: one "good" outcome - " 6 " three "bad" outcomes - " 1 ", " 3 ", " 5 "
$P($ " 6 " before odd $)=\mathbf{1} / 4=\mathbf{0 . 2 5}$.
6. An automobile salesman thinks that the probability of making a sale is 0.30 . If he talks to five customers on a particular day, what is the probability that he will make exactly 2 sales? (Assume independence.)

$$
\begin{aligned}
& \text { S S F F F F S F S F } \\
& \text { S F S F F F S F F S } \\
& \text { S F F S F } \\
& \text { F F S S F } \\
& S \text { F F F S } \\
& \text { F F S F S } \\
& \text { F S S F F } \\
& \text { F F F S S } \\
& P(\text { exactly } 2 \text { sales })=10 \cdot(0.30)^{2} \cdot(0.70)^{3}=\mathbf{0 . 3 0 8 7} \text {. }
\end{aligned}
$$

6 $1 / 2$. A jar has N marbles, K of them are orange and $N-K$ are blue. Suppose marbles are selected from the jar without replacementren. Find the probability that the second marble is orange.

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{O}_{2}\right) & =\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2}\right)+\mathrm{P}\left(\mathrm{~B}_{1} \mathrm{O}_{2}\right)=\frac{K}{N} \cdot \frac{K-1}{N-1}+\frac{N-K}{N} \cdot \frac{K}{N-1} \\
& =\frac{K}{N(N-1)} \cdot[(K-1)+(N-K)]=\frac{K}{N} .
\end{aligned}
$$

Note that $\mathrm{P}\left(\mathrm{O}_{2}\right)=\mathrm{P}\left(\mathrm{O}_{1}\right)$.
Similarly, $\mathrm{P}\left(\mathrm{O}_{3}\right)=\mathrm{P}\left(\mathrm{O}_{4}\right)=\ldots=\frac{K}{N}$.

However, $\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2}\right) \neq \mathrm{P}\left(\mathrm{O}_{2}\right) \times \mathrm{P}\left(\mathrm{O}_{1}\right)$.
O_{1} and O_{2} are NOT independent.

Series Connection:

In general, $\quad \mathbf{r}_{1} \times \mathbf{r}_{2} \times \ldots \times \mathbf{r}_{\mathrm{k}}$

Parallel Connection:

Reliability:

$$
\begin{gathered}
1-\left(1-\mathbf{r}_{1}\right) \times\left(1-\mathbf{r}_{2}\right) \\
\mathbf{r}_{1}+\mathbf{r}_{2}-\mathbf{r}_{1} \times \mathbf{r}_{2}
\end{gathered}
$$

In general,

$$
1-\left(1-\mathbf{r}_{1}\right) \times\left(1-\mathbf{r}_{2}\right) \times \ldots \times\left(1-\mathbf{r}_{\mathrm{k}}\right)
$$

7. Compute the reliability of the following system of independent components (the numbers represent the reliability of each component):

$$
1-(1-0.80) \times(1-0.70)=0.94 \quad \text { OR } \quad 0.80+0.70-0.80 \times 0.70=0.94
$$

$0.90 \times 0.94=\mathbf{0 . 8 4 6}$.
8. Compute the reliability of the following system of independent components (the numbers represent the reliability of each component):

$1-(1-0.80) \times(1-0.70)=0.94 \quad$ OR $0.80+0.70-0.80 \times 0.70=0.94$. $0.80 \times 0.90=0.72$.

$1-(1-0.94) \times(1-0.72)=\mathbf{0 . 9 8 3 2}$ OR $0.80+0.70-0.80 \times 0.70=\mathbf{0 . 9 8 3 2}$.

