The conditional probability of \mathbf{A}, given \mathbf{B} (the probability of event A, computed on the assumption that event B has happened) is

$$
\left.\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})} \quad \text { (assuming } \mathrm{P}(\mathrm{~B}) \neq 0\right)
$$

Similarly, the conditional probability of \mathbf{B}, given \mathbf{A} is

$$
\left.\mathbf{P}(\mathbf{B} \mid \mathbf{A})=\frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{A})} \quad \text { (assuming } P(\mathrm{~A}) \neq 0\right)
$$

3. (continued)

The probability that a randomly selected student at Anytown College owns a bicycle is 0.55 , the probability that a student owns a car is 0.30 , and the probability that a student owns both is 0.10 .

	C	C^{\prime}	
B	0.10	0.45	0.55
$\mathrm{~B}^{\prime}$	0.20	0.25	0.45
	0.30	0.70	1.00

$\mathrm{P}(\mathrm{B})=0.55, \mathrm{P}(\mathrm{C})=0.30, \mathrm{P}(\mathrm{B} \cap \mathrm{C})=0.10$.
a) What is the probability that a student owns a bicycle, given that he/she owns a car?
$P(B \mid C)=0.10 / 0.30=1 / 3$.
b) Suppose a student does not have a bicycle. What is the probability that he/she has a car?
$P\left(C \mid B^{\prime}\right)=0.20 / 0.45=4 / 9$.
5. (continued)

Suppose

$$
\begin{aligned}
& P(A)=0.22, \\
& P(B)=0.25, \\
& P(C)=0.28, \\
& P(A \cap B)=0.11, \\
& P(A \cap C)=0.05, \\
& P(B \cap C)=0.07, \\
& P(A \cap B \cap C)=0.01 .
\end{aligned}
$$

Find the following:

a) $\quad P(B \mid A)$

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=0.11 / 0.22=\mathbf{0 . 5 0} .
$$

b) $\quad \mathrm{P}(\mathrm{B} \mid \mathrm{C})$

$$
P(B \mid C)=0.07 / 0.28=\mathbf{0 . 2 5} .
$$

c) $\quad \mathrm{P}(\mathrm{B} \cap \mathrm{C} \mid \mathrm{A})$
$\mathrm{P}(\mathrm{B} \cap \mathrm{C} \mid \mathrm{A})=0.01 / 0.22=\mathbf{1} / \mathbf{2 2}$.
d) $\quad \mathrm{P}(\mathrm{B} \cup \mathrm{C} \mid \mathrm{A})$
e) $\quad \mathrm{P}(\mathrm{C} \mid \mathrm{A} \cup \mathrm{B})$
$P(B \cup C \mid A)=0.15 / 0.22=15 / 22$.
$\mathrm{P}(\mathrm{C} \mid \mathrm{A} \cup \mathrm{B})=0.11 / 0.36=11 / 36$.
f) $P(C \mid A \cap B)$
g) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C} \mid \mathrm{A} \cup \mathrm{B} \cup \mathrm{C})$

$$
\mathrm{P}(\mathrm{C} \mid \mathrm{A} \cap \mathrm{~B})=0.01 / 0.11=\mathbf{1} / \mathbf{1 1} . \quad \mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C} \mid \mathrm{A} \cup \mathrm{~B} \cup \mathrm{C})=0.01 / 0.53=\mathbf{1} / 53 .
$$

Multiplication Law of Probability
If A and B are any two events, then

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathbf{P}(\mathbf{A}) \cdot \mathbf{P}(\mathbf{B} \mid \mathbf{A}) \\
& \mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathbf{P}(\mathbf{B}) \cdot \mathbf{P}(\mathbf{A} \mid \mathbf{B})
\end{aligned}
$$

8. It is known that 30% of all the students at Anytown College live off campus. Suppose also that 48% of all the students are females. Of the female students, 25% live off campus.
$P($ Off $)=0.30, \quad P(F)=0.48, \quad P($ Off $\mid F)=0.25$.
a) What is the probability that a randomly selected student is a female and lives off campus?
$\mathrm{P}(\mathrm{F} \cap \mathrm{Off})=\mathrm{P}(\mathrm{F}) \times \mathrm{P}(\mathrm{Off} \mid \mathrm{F})=0.48 \times 0.25=\mathbf{0 . 1 2}$.

	Off	On	
F	0.12	0.36	0.48
M	0.18	0.34	0.52
	0.30	0.70	1.00

b) What is the probability that a randomly selected student either is a female or lives off campus, or both?
$\mathrm{P}(\mathrm{F} \cup \mathrm{Off})=\mathrm{P}(\mathrm{F})+\mathrm{P}(\mathrm{Off})-\mathrm{P}(\mathrm{F} \cap \mathrm{Off})=0.48+0.30-0.12=\mathbf{0 . 6 6}$.
OR

$$
\begin{aligned}
\mathrm{P}(\mathrm{~F} \cup \mathrm{Off}) & =\mathrm{P}(\mathrm{~F} \cap \text { Off })+\mathrm{P}\left(\mathrm{~F}^{\prime} \cap \text { Off }\right)+\mathrm{P}\left(\mathrm{~F} \cap \text { Off }^{\prime}\right) \\
& =0.12+0.18+0.36=\mathbf{0 . 6 6} .
\end{aligned}
$$

OR
$\mathrm{P}(\mathrm{F} \cup$ Off $)=1-\mathrm{P}\left(\mathrm{F}^{\prime} \cap\right.$ Off $\left.^{\prime}\right)=1-0.34=\mathbf{0 . 6 6}$.
c) What proportion of the off-campus students are females?
$\mathrm{P}(\mathrm{F} \mid$ Off $)=0.12 / 0.30=\mathbf{0 . 4 0}$.
d) What proportion of the male students live off campus?
$\mathrm{P}($ Off $\mid \mathrm{M})=0.18 / 0.52=9 / 26 \approx \mathbf{0 . 3 4 6 1 5 4}$.
9. Suppose that Joe's Discount Store has received a shipment of 25 television sets, 5 of which are defective. On the following day, 2 television sets are sold.
a) Find the probability that both of the television sets are defective.
$\mathrm{P}($ both defective $)=\mathrm{P}(1$ st $\mathrm{D} \cap 2$ nd D$)=\mathrm{P}(1$ st D$) \times \mathrm{P}(2 \mathrm{nd} \mathrm{D} \mid 1$ st D$)$

$$
=5 / 25 \times 4 / 24=1 / 30 .
$$

b) Find the probability that at least one of the two television sets sold is defective.

$$
\begin{array}{llll}
\checkmark & \text { D } & \text { D } & 5 / 25 \times 4 / 24=1 / 30 . \\
\checkmark & \text { D } & \text { D' }^{\prime} & 5 / 25 \times 20 / 24=5 / 30 . \\
\checkmark & \text { D' }^{\prime} & \text { D } & 20 / 25 \times 5 / 24=5 / 30 . \\
\times & \text { D' }^{\prime} & \text { D' }^{\prime} & \\
& & \\
& \\
\text { P at least one } D) & =1 / 30+5 / 30+5 / 30=11 / 30 .
\end{array}
$$

OR
$P($ at least one $D)=1-P\left(D^{\prime} D^{\prime}\right)=1-20 / 25 \times 19 / 24=1-19 / 30=11 / \mathbf{3 0}$.
10. Cards are drawn one-by-one without replacement from a standard 52-card deck. What is the probability that ...
a) ... both the first and the second card drawn are \downarrow 's?

$$
\mathrm{P}(1 \mathrm{st} \bullet \cap 2 \mathrm{nd} \bullet)=\mathrm{P}(1 \mathrm{st} \bullet) \times \mathrm{P}(2 \mathrm{nd} \bullet \mid \text { st } \bullet)=13 / 52 \times 12 / 51=\mathbf{1} / \mathbf{1 7} .
$$

b) ... the first two cards drawn are a $\boldsymbol{\bullet}$ and a $\boldsymbol{\&}($ or a $\&$ and a $\boldsymbol{\bullet})$?

$$
\mathrm{P}(1 \text { st } \cup 2 \mathrm{nd} \propto)+\mathrm{P}(1 \text { st } \bullet 2 \text { nd } \boldsymbol{*})=13 / 52 \times 13 / 51+13 / 52 \times 13 / 51 .
$$

c) ... there are at least two \downarrow 's among the first three cards drawn?

$$
\begin{aligned}
& \bullet \quad \bullet \quad \downarrow \quad 13 / 52 \times 12 / 51 \times 39 / 50 \\
& \text { Or } \\
& 13 / 52 \times 39 / 51 \times 12 / 50 \\
& \text { or } \\
& \vee \\
& 39 / 52 \times 13 / 51 \times 12 / 50 \\
& + \\
& \downarrow \quad \text { - } \quad \\
& 19968 / 132600 \approx \mathbf{0 . 1 5 0 5 8 8} \text {. }
\end{aligned}
$$

