STAT 400 UIUC

Suppose a 6-sided die is rolled. The sample space, S, is { 1, 2, 3, 4, 5, 6 }.
 Consider the following events:

 $A = \{$ the outcome is even $\},$

 $B = \{$ the outcome is greater than 3 $\},$

- a) List outcomes in A, B, A', $A \cap B$, $A \cup B$.
 - A = { the outcome is even } = { 2, 4, 6 },
 - B = { the outcome is greater than 3 } = { 4, 5, 6 },

 $A' = \{ 1, 3, 5 \},\$

 $A \cap B = \{ 4, 6 \},$

$$A \cup B = \{ 2, 4, 5, 6 \}.$$

b) Find the probabilities P(A), P(B), P(A'), $P(A \cap B)$, $P(A \cup B)$ if the die is balanced (fair).

P(A) = $\frac{3}{6}$, P(B) = $\frac{3}{6}$, P(A') = $\frac{3}{6}$, P(A \cap B) = $\frac{2}{6}$, P(A \cap B) = $\frac{4}{6}$. c) Suppose the die is loaded so that the probability of an outcome is proportional to the outcome, i.e.

P(1) = p, P(2) = 2p, P(3) = 3p, P(4) = 4p, P(5) = 5p, P(6) = 6p.

i) Find the value of *p* that would make this a valid probability model.

$$P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1.$$

$$p + 2p + 3p + 4p + 5p + 6p = 21p = 1. \qquad \Rightarrow \qquad p = \frac{1}{21}.$$

ii) Find the probabilities P(A), P(B), P(A'), $P(A \cap B)$, $P(A \cup B)$.

$$P(A) = P(2) + P(4) + P(6) = \frac{2}{21} + \frac{4}{21} + \frac{6}{21} = \frac{12}{21}.$$

$$P(B) = P(4) + P(5) + P(6) = \frac{4}{21} + \frac{5}{21} + \frac{6}{21} = \frac{15}{21}.$$

$$P(A') = 1 - P(A) = 1 - \frac{12}{21} = \frac{9}{21}$$
.

OR

 $P(A') = P(1) + P(3) + P(5) = \frac{1}{21} + \frac{3}{21} + \frac{5}{21} = \frac{9}{21}.$

$$P(A \cap B) = P(4) + P(6) = \frac{4}{21} + \frac{6}{21} = \frac{10}{21}$$

$$P(A \cup B) = P(2) + P(4) + P(5) + P(6) = \frac{2}{21} + \frac{4}{21} + \frac{5}{21} + \frac{6}{21} = \frac{17}{21}.$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{12}{21} + \frac{15}{21} - \frac{10}{21} = \frac{17}{21}.$$

2. Consider a "thick" coin with three possible outcomes of a toss (Heads, Tails, and Edge) for which Heads and Tails are equally likely, but Heads is five times as likely than Edge. What is the probability of Heads?

P(Heads) = P(Tails) = p for some p. P(Edge) = $\frac{1}{5}p$.

P(Heads) + P(Tails) + P(Edge) = 1.

$$p + p + \frac{1}{5}p = 1.$$
 $\frac{11}{5}p = 1.$
P(Heads) = $p = \frac{5}{11}.$

3. The probability that a randomly selected student at Anytown College owns a bicycle is 0.55, the probability that a student owns a car is 0.30, and the probability that a student owns both is 0.10.

P(B) = 0.55, P(C) = 0.30, P(B \cap C) = 0.10.

a) What is the probability that a student selected at random does not own a bicycle?

P(B') = 1 - P(B) = 1 - 0.55 = 0.45.

_	С	С′	
В	0.10	0.45	0.55
Β′	0.20	0.25	0.45
	0.30	0.70	1.00

b) What is the probability that a student selected at random owns either a car or a bicycle, or both?

$$P(B \cup C) = P(B) + P(C) - P(B \cap C) = 0.55 + 0.30 - 0.10 = 0.75.$$

OR

$$P(B \cup C) = P(B \cap C) + P(B' \cap C) + P(B \cap C') = 0.10 + 0.20 + 0.45 = 0.75.$$

OR

 $P(B \cup C) = 1 - P(B' \cap C') = 1 - 0.25 = 0.75.$

c) What is the probability that a student selected at random has neither a car nor a bicycle?

 $P(B' \cap C') = 0.25.$

During the first week of the semester, 80% of customers at a local convenience store bought either beer or potato chips (or both). 60% bought potato chips. 30% of the customers bought both beer and potato chips. What proportion of customers bought beer?

P(B ∪ PC) = 0.80, P(PC) = 0.60, P(B ∩ PC) = 0.30. P(B ∪ PC) = P(B) + P(PC) - P(B ∩ PC). 0.80 = P(B) + 0.60 - 0.30. \Rightarrow P(B) = **0.50**.

5. Suppose

$$P(A) = 0.22,$$
 $P(B) = 0.25,$ $P(C) = 0.28,$ $P(A \cap B) = 0.11,$ $P(A \cap C) = 0.05,$ $P(B \cap C) = 0.07,$ $P(A \cap B \cap C) = 0.01.$

Find the following:

- a) $P(A \cup B)$ b)
- c) $P(A \cup B \cup C)$
- e) $P(A' \cap B' \cap C)$
- g) $P((A \cup B) \cap C)$
- a) $P(A \cup B) = 0.36$.
- b) $P(A' \cap B') = 0.64.$
- c) $P(A \cup B \cup C) = 0.53$.
- d) $P(A' \cap B' \cap C') = 0.47.$
- e) $P(A' \cap B' \cap C) = 0.17.$
- f) $P((A' \cap B') \cup C) = 0.75.$
- g) $P((A \cup B) \cap C) = 0.11.$

h)
$$P((B \cap C') \cup A') = 0.88$$

$$P(A' \cap B')$$

d)
$$P(A' \cap B' \cap C')$$

f)
$$P((A' \cap B') \cup C)$$

h) $P((B \cap C') \cup A')$

6. Let a > 2. Suppose $S = \{0, 1, 2, 3, ...\}$ and

P(0) = c, P(k) =
$$\frac{1}{a^k}$$
, k = 1, 2, 3,

a) Find the value of c (c will depend on a) that makes this is a valid probability distribution.

Must have
$$\sum_{\substack{all \ x}} p(x) = 1$$
. $\Rightarrow c + \sum_{k=1}^{\infty} \frac{1}{a^k} = 1$.
 $\sum_{k=0}^{\infty} b^k = \frac{1}{1-b}$, $|b| < 1$.
 $\sum_{k=1}^{\infty} \frac{1}{a^k} = \left[\sum_{k=0}^{\infty} \frac{1}{a^k}\right] - 1 = \frac{1}{1-\frac{1}{a}} - 1 = \frac{1}{a-1}$.
OR
 $\sum_{k=1}^{\infty} \frac{1}{a^k} = \frac{1}{a} \cdot \sum_{k=0}^{\infty} \frac{1}{a^k} = \frac{1}{a} \cdot \frac{1}{1-\frac{1}{a}} = \frac{1}{a-1}$.
 $c + \frac{1}{a-1} = 1$.
 $c = 1 - \frac{1}{a-1} = \frac{a-2}{a-1} = 2 - \frac{a}{a-1}$.

b) Find the probability of an odd outcome.

$$P(\text{odd}) = p(1) + p(3) + p(5) + \dots = \frac{1}{a^1} + \frac{1}{a^3} + \frac{1}{a^5} + \dots$$
$$= \frac{first \ term}{1 - base} = \frac{\frac{1}{a}}{1 - \frac{1}{a^2}} = \frac{a}{a^2 - 1}.$$

7. Suppose $S = \{0, 1, 2, 3, ...\}$ and

P(0) = p, P(k) =
$$\frac{1}{2^k \cdot k!}$$
, $k = 1, 2, 3, ...$

Find the value of p that would make this a valid probability model.

Must have
$$\sum_{\text{all } x} p(x) = 1.$$
 \Rightarrow $p + \sum_{k=1}^{\infty} \frac{1}{2^k \cdot k!} = 1.$
Since $\sum_{k=0}^{\infty} \frac{a^k}{k!} = e^a$, $\sum_{k=1}^{\infty} \frac{1}{2^k \cdot k!} = \sum_{k=0}^{\infty} \frac{1}{2^k \cdot k!} - 1 = e^{1/2} - 1.$

Therefore, $p + (e^{1/2} - 1) = 1$ and $p = 2 - e^{1/2}$.