1. Suppose a 6 -sided die is rolled. The sample space, S, is $\{1,2,3,4,5,6\}$. Consider the following events:

$$
\begin{aligned}
& \mathrm{A}=\{\text { the outcome is even }\}, \\
& \mathrm{B}=\{\text { the outcome is greater than } 3\},
\end{aligned}
$$

a) List outcomes in $A, B, A^{\prime}, A \cap B, A \cup B$.
$A=\{$ the outcome is even $\}=\{2,4,6\}$,
$B=\{$ the outcome is greater than 3$\}=\{4,5,6\}$,
$A^{\prime}=\{1,3,5\}$,
$A \cap B=\{4,6\}$,
$A \cup B=\{2,4,5,6\}$.
b) Find the probabilities $\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B}), \mathrm{P}\left(\mathrm{A}^{\prime}\right), \mathrm{P}(\mathrm{A} \cap \mathrm{B}), \mathrm{P}(\mathrm{A} \cup \mathrm{B})$ if the die is balanced (fair).
$P(A)=\mathbf{3} / \mathbf{6}$,
$P(B)=\mathbf{3} / \mathbf{6}$,
$P\left(A^{\prime}\right)=3 / 6$,
$P(A \cap B)=2 / 6$,
$P(A \cup B)=4 / 6$.
c) Suppose the die is loaded so that the probability of an outcome is proportional to the outcome, i.e.

$$
\mathrm{P}(1)=p, \mathrm{P}(2)=2 p, \mathrm{P}(3)=3 p, \mathrm{P}(4)=4 p, \quad \mathrm{P}(5)=5 p, \mathrm{P}(6)=6 p .
$$

i) Find the value of p that would make this a valid probability model.
$\mathrm{P}(1)+\mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(4)+\mathrm{P}(5)+\mathrm{P}(6)=1$.
$p+2 p+3 p+4 p+5 p+6 p=21 p=1 . \quad \Rightarrow \quad p=\mathbf{1} / \mathbf{2 1}$.
ii) Find the probabilities $\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B}), \mathrm{P}\left(\mathrm{A}^{\prime}\right), \mathrm{P}(\mathrm{A} \cap \mathrm{B}), \mathrm{P}(\mathrm{A} \cup \mathrm{B})$.

$$
P(A)=P(2)+P(4)+P(6)=2 / 21+4 / 21+6 / 21=12 / 21 .
$$

$$
P(B)=P(4)+P(5)+P(6)=4 / 21+5 / 21+6 / 21=15 / 21 .
$$

$\mathrm{P}\left(\mathrm{A}^{\prime}\right)=1-\mathrm{P}(\mathrm{A})=1-12 / 21=\mathbf{9} / \mathbf{2 1}$.
OR
$P\left(A^{\prime}\right)=P(1)+P(3)+P(5)=1 / 21+3 / 21+5 / 21=\mathbf{9} / \mathbf{2 1}$.
$P(A \cap B)=P(4)+P(6)=4 / 21+6 / 21=10 / 21$.
$P(A \cup B)=P(2)+P(4)+P(5)+P(6)=2 / 21+4 / 21+5 / 21+6 / 21=17 / 21$.
OR
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=12 / 21+15 / 21-10 / 21=\mathbf{1 7} / \mathbf{2 1}$.
2. Consider a "thick" coin with three possible outcomes of a toss (Heads, Tails, and Edge) for which Heads and Tails are equally likely, but Heads is five times as likely than Edge. What is the probability of Heads ?
$\mathrm{P}($ Heads $)=\mathrm{P}($ Tails $)=p \quad$ for some $p . \quad \mathrm{P}($ Edge $)=\frac{1}{5} p$.
$P($ Heads $)+P($ Tails $)+P($ Edge $)=1$.
$p+p+\frac{1}{5} p=1 . \quad \frac{11}{5} p=1$.
$\mathrm{P}($ Heads $)=p=\frac{\mathbf{5}}{\mathbf{1 1}}$.
3. The probability that a randomly selected student at Anytown College owns a bicycle is 0.55 , the probability that a student owns a car is 0.30 , and the probability that a student owns both is 0.10 .
$\mathrm{P}(\mathrm{B})=0.55, \quad \mathrm{P}(\mathrm{C})=0.30, \quad \mathrm{P}(\mathrm{B} \cap \mathrm{C})=0.10$.
a) What is the probability that a student selected at random does not own a bicycle?
$P\left(B^{\prime}\right)=1-P(B)=1-0.55=\mathbf{0 . 4 5}$.

	C	C^{\prime}	
B	0.10	0.45	0.55
$\mathrm{~B}^{\prime}$	0.20	0.25	0.45
	0.30	0.70	1.00

b) What is the probability that a student selected at random owns either a car or a bicycle, or both?
$P(B \cup C)=P(B)+P(C)-P(B \cap C)=0.55+0.30-0.10=\mathbf{0 . 7 5}$.

OR
$P(B \cup C)=P(B \cap C)+P\left(B^{\prime} \cap C\right)+P\left(B \cap C^{\prime}\right)=0.10+0.20+0.45=\mathbf{0 . 7 5}$.

OR
$P(B \cup C)=1-P\left(B^{\prime} \cap C^{\prime}\right)=1-0.25=\mathbf{0 . 7 5}$.
c) What is the probability that a student selected at random has neither a car nor a bicycle?
$P\left(B^{\prime} \cap C^{\prime}\right)=\mathbf{0 . 2 5}$.
4. During the first week of the semester, 80% of customers at a local convenience store bought either beer or potato chips (or both). 60\% bought potato chips. 30% of the customers bought both beer and potato chips. What proportion of customers bought beer?

$$
\begin{aligned}
& P(B \cup P C)=0.80, \quad P(P C)=0.60, \quad P(B \cap P C)=0.30 . \\
& \mathrm{P}(\mathrm{~B} \cup \mathrm{PC})=\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{PC})-\mathrm{P}(\mathrm{~B} \cap \mathrm{PC}) . \\
& 0.80=\mathrm{P}(\mathrm{~B})+0.60-0.30 . \quad \Rightarrow \quad \mathrm{P}(\mathrm{~B})=\mathbf{0 . 5 0} .
\end{aligned}
$$

5. Suppose

$$
\begin{array}{lc}
P(A)=0.22, & P(B)=0.25, \\
P(A \cap B)=0.11, & P(C)=0.28, \\
P(B \cap C)=0.07, & P(A \cap B)=0.05, \\
P C)=0.01 .
\end{array}
$$

Find the following:
a) $\quad P(A \cup B)$
b) $\quad \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$
c) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})$
d) $\quad \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}\right)$
e) $\quad P\left(A^{\prime} \cap B^{\prime} \cap C\right)$
f) $\quad P\left(\left(A^{\prime} \cap B^{\prime}\right) \cup C\right)$
g) $\quad P((A \cup B) \cap C)$
h) $\quad \mathrm{P}\left(\left(\mathrm{B} \cap \mathrm{C}^{\prime}\right) \cup \mathrm{A}^{\prime}\right)$
a) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathbf{0} .36$.
b) $\quad \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=\mathbf{0 . 6 4}$.
c) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=\mathbf{0 . 5 3}$.
d) $\quad \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}\right)=\mathbf{0 . 4 7}$.
e) $\quad \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} \cap \mathrm{C}\right)=\mathbf{0 . 1 7}$.
f) $\quad \mathrm{P}\left(\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right) \cup \mathrm{C}\right)=\mathbf{0 . 7 5}$.

g) $\quad P((A \cup B) \cap C)=\mathbf{0 . 1 1}$.
h) $\quad \mathrm{P}\left(\left(\mathrm{B} \cap \mathrm{C}^{\prime}\right) \cup \mathrm{A}^{\prime}\right)=\mathbf{0 . 8 8}$.
6. Let $a>2$. Suppose $S=\{0,1,2,3, \ldots\}$ and

$$
\mathrm{P}(0)=c, \quad \mathrm{P}(k)=\frac{1}{a^{k}}, \quad k=1,2,3, \ldots
$$

a) Find the value of c (c will depend on a) that makes this is a valid probability distribution.

Must have $\sum_{\text {all } x} p(x)=1 . \quad \Rightarrow \quad c+\sum_{k=1}^{\infty} \frac{1}{a^{k}}=1$.

$$
\sum_{k=0}^{\infty} b^{k}=\frac{1}{1-b}, \quad|b|<1 .
$$

$$
\sum_{k=1}^{\infty} \frac{1}{a^{k}}=\left[\sum_{k=0}^{\infty} \frac{1}{a^{k}}\right]-1=\frac{1}{1-1 / a}-1=\frac{1}{a-1} .
$$ OR

b) Find the probability of an odd outcome.

$$
\begin{aligned}
\mathrm{P}(\text { odd }) & =p(1)+p(3)+p(5)+\ldots=\frac{1}{a^{1}}+\frac{1}{a^{3}}+\frac{1}{a^{5}}+\ldots \\
& =\frac{\text { first term }}{1-\text { base }}=\frac{\frac{1}{a}}{1-\frac{1}{a^{2}}}=\frac{a}{a^{2}-1} .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{a^{k}}=\frac{1}{a} \cdot \sum_{k=0}^{\infty} \frac{1}{a^{k}}=\frac{1}{a} \cdot \frac{1}{1-1 / a}=\frac{1}{a-1} . \\
& c+\frac{1}{a-1}=1 . \quad c=1-\frac{1}{a-1}=\frac{a-2}{a-1}=2-\frac{a}{a-1} .
\end{aligned}
$$

7. Suppose $S=\{0,1,2,3, \ldots\}$ and

$$
\mathrm{P}(0)=p, \quad \mathrm{P}(k)=\frac{1}{2^{k} \cdot k!}, \quad k=1,2,3, \ldots
$$

Find the value of p that would make this a valid probability model.

Must have $\sum_{\text {all } X} p(x)=1 . \quad \Rightarrow \quad p+\sum_{k=1}^{\infty} \frac{1}{2^{k} \cdot k!}=1$.
Since $\sum_{k=0}^{\infty} \frac{a^{k}}{k!}=e^{a}, \quad \sum_{k=1}^{\infty} \frac{1}{2^{k} \cdot k!}=\sum_{k=0}^{\infty} \frac{1}{2^{k} \cdot k!}-1=e^{1 / 2}-1$.

Therefore, $p+\left(e^{1 / 2}-1\right)=1$ and $p=2-e^{1 / 2}$.

