

Stepanov

Dalpiaz

Axiom 1 Let A be any event defined over S. Then $P(A) \ge 0$.

Axiom 2 P(S) = 1.

Axiom 3 If $A_1, A_2, A_3, ...$ are events and $A_i \cap A_j = \emptyset$ for each $i \neq j$, then $P(A_1 \cup A_2 \cup ... \cup A_k) = P(A_1) + P(A_2) + ... + P(A_k)$

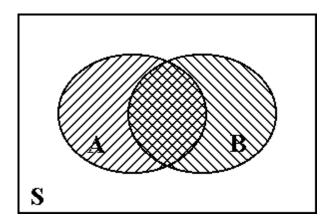
for each positive integer k, and

 $P(A_1 \cup A_2 \cup A_3 \cup \dots) = P(A_1) + P(A_2) + P(A_3) + \dots$ for an infinite, but countable, number of events.

Theorem 1. P(A') = 1 - P(A).

- **Theorem 2**. $P(\emptyset) = 0$.
- **Theorem 3**. If $A \subset B$, then $P(A) \le P(B)$.

Theorem 4. For any event A, $P(A) \le 1$.



Theorem 5.

If A and B are any two events, then

 $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

P(A or B) = P(A) + P(B) - P(A and B).

Theorem 6.
$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A \cap B) - P(A \cap C) - P(B \cap C)$$
$$+ P(A \cap B \cap C)$$
$$P(A \cup B \cup C \cup D) = P(A) + P(B) + P(C) + P(D)$$
$$-P(A \cap B) - P(A \cap C) - P(A \cap D)$$
$$-P(B \cap C) - P(B \cap D) - P(C \cap D)$$
$$+ P(A \cap B \cap C) + P(A \cap B \cap D)$$
$$+ P(A \cap C \cap D) + P(B \cap C \cap D)$$
$$-P(A \cap B \cap C \cap D)$$

1. Suppose a 6-sided die is rolled. The sample space, S, is { 1, 2, 3, 4, 5, 6 }. Consider the following events:

 $A = \{ \text{ the outcome is even } \},$

 $B = \{$ the outcome is greater than 3 $\},$

a) List outcomes in A, B, A', $A \cap B$, $A \cup B$.

b) Find the probabilities P(A), P(B), P(A'), $P(A \cap B)$, $P(A \cup B)$ if the die is balanced (fair).

c) Suppose the die is loaded so that the probability of an outcome is proportional to the outcome, i.e.

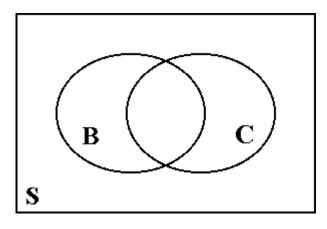
P(1) = p, P(2) = 2p, P(3) = 3p, P(4) = 4p, P(5) = 5p, P(6) = 6p.

i) Find the value of p that would make this a valid probability model.

ii) Find the probabilities P(A), P(B), P(A'), $P(A \cap B)$, $P(A \cup B)$.

2. Consider a "thick" coin with three possible outcomes of a toss (Heads, Tails, and Edge) for which Heads and Tails are equally likely, but Heads is five times as likely than Edge. What is the probability of Heads?

- **3.** The probability that a randomly selected student at Anytown College owns a bicycle is 0.55, the probability that a student owns a car is 0.30, and the probability that a student owns both is 0.10.
- a) What is the probability that a student selected at random does not own a bicycle?
- b) What is the probability that a student selected at random owns either a car or a bicycle, or both?
- c) What is the probability that a student selected at random has neither a car nor a bicycle?

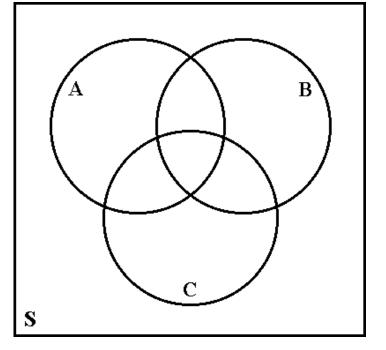


	С	С′	
В			
Β′			

4. During the first week of the semester, 80% of customers at a local convenience store bought either beer or potato chips (or both). 60% bought potato chips. 30% of the customers bought both beer and potato chips. What proportion of customers bought beer?

5. Suppose P(A) = 0.22, P(B) = 0.25, P(C) = 0.28, $P(A \cap B) = 0.11,$ $P(A \cap C) = 0.05,$ $P(B \cap C) = 0.07,$ $P(A \cap B \cap C) = 0.01.$ Find the following:

a) $P(A \cup B)$



b) $P(A' \cap B')$

c) $P(A \cup B \cup C)$

e) $P(A' \cap B' \cap C)$

d) $P(A' \cap B' \cap C')$

f) $P((A' \cap B') \cup C)$

g) $P((A \cup B) \cap C)$

h) $P((B \cap C') \cup A')$

6. Let a > 2. Suppose $S = \{0, 1, 2, 3, ... \}$ and

P(0) = c, P(k) =
$$\frac{1}{a^k}$$
, k = 1, 2, 3, ...

a) Find the value of c (c will depend on a) that makes this is a valid probability distribution.

b) Find the probability of an odd outcome.

7. Suppose $S = \{0, 1, 2, 3, ...\}$ and

P(0) = p, P(k) =
$$\frac{1}{2^k \cdot k!}$$
, k = 1, 2, 3,

Find the value of p that would make this a valid probability model.