STAT 400

UIUC

Examples for 1.1

Intersection of A and B
$A \cap B$
(A and B, AB)
contains all elements
that are in A and in B

Union of A and B

$A \cup B$

(A or B)
contains all elements
that are either in A or in B or both

Axiom 1 Let A be any event defined over S . Then $\mathrm{P}(\mathrm{A}) \geq 0$.
Axiom $2 \quad \mathrm{P}(\mathrm{S})=1$.
Axiom 3 If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ are events and $\mathrm{A}_{i} \cap \mathrm{~A}_{j}=\varnothing$ for each $i \neq j$, then

$$
\mathrm{P}\left(\mathrm{~A}_{1} \cup \mathrm{~A}_{2} \cup \ldots \cup \mathrm{~A}_{k}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{~A}_{k}\right)
$$

for each positive integer k, and

$$
\mathrm{P}\left(\mathrm{~A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \cup \ldots\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right)+\mathrm{P}\left(\mathrm{~A}_{3}\right)+\ldots
$$

for an infinite, but countable, number of events.

Theorem 1. $\quad \mathrm{P}\left(\mathrm{A}^{\prime}\right)=1-\mathrm{P}(\mathrm{A})$.

Theorem 2. $P(\varnothing)=0$.

Theorem 3. If $\mathrm{A} \subset \mathrm{B}$, then $\mathrm{P}(\mathrm{A}) \leq \mathrm{P}(\mathrm{B})$.

Theorem 4. For any event $\mathrm{A}, \mathrm{P}(\mathrm{A}) \leq 1$.

Theorem 5.

If A and B are any two events, then
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$.

Theorem 6.

$$
\begin{aligned}
& P(A \cup B \cup C)=P(A)+P(B)+P(C) \\
& -P(A \cap B)-P(A \cap C)-P(B \cap C) \\
& +P(A \cap B \cap C) \\
& P(A \cup B \cup C \cup D)=P(A)+P(B)+P(C)+P(D) \\
& -P(A \cap B)-P(A \cap C)-P(A \cap D) \\
& -P(B \cap C)-P(B \cap D)-P(C \cap D) \\
& +\mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{D}) \\
& +P(A \cap C \cap D)+P(B \cap C \cap D) \\
& -P(A \cap B \cap C \cap D)
\end{aligned}
$$

1. Suppose a 6 -sided die is rolled. The sample space, S, is $\{1,2,3,4,5,6\}$. Consider the following events:

$$
\begin{aligned}
& A=\{\text { the outcome is even }\}, \\
& B=\{\text { the outcome is greater than } 3\},
\end{aligned}
$$

a) List outcomes in $A, B, A^{\prime}, A \cap B, A \cup B$.
b) Find the probabilities $\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B}), \mathrm{P}\left(\mathrm{A}^{\prime}\right), \mathrm{P}(\mathrm{A} \cap \mathrm{B}), \mathrm{P}(\mathrm{A} \cup \mathrm{B})$ if the die is balanced (fair).
c) Suppose the die is loaded so that the probability of an outcome is proportional to the outcome, i.e.

$$
\mathrm{P}(1)=p, \mathrm{P}(2)=2 p, \mathrm{P}(3)=3 p, \quad \mathrm{P}(4)=4 p, \quad \mathrm{P}(5)=5 p, \quad \mathrm{P}(6)=6 p .
$$

i) Find the value of p that would make this a valid probability model.
ii) Find the probabilities $\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B}), \mathrm{P}\left(\mathrm{A}^{\prime}\right), \mathrm{P}(\mathrm{A} \cap \mathrm{B}), \mathrm{P}(\mathrm{A} \cup \mathrm{B})$.
2. Consider a "thick" coin with three possible outcomes of a toss (Heads, Tails, and Edge) for which Heads and Tails are equally likely, but Heads is five times as likely than Edge. What is the probability of Heads ?
3. The probability that a randomly selected student at Anytown College owns a bicycle is 0.55 , the probability that a student owns a car is 0.30 , and the probability that a student owns both is 0.10 .
a) What is the probability that a student selected at random does not own a bicycle?
b) What is the probability that a student selected at random owns either a car or a bicycle, or both?
c) What is the probability that a student selected at random has neither a car nor a bicycle?

4. During the first week of the semester, 80% of customers at a local convenience store bought either beer or potato chips (or both). 60% bought potato chips. 30% of the customers bought both beer and potato chips. What proportion of customers bought beer?
5. Suppose
$\mathrm{P}(\mathrm{A})=0.22$,
$P(B)=0.25$,
$P(C)=0.28$,
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.11$,
$\mathrm{P}(\mathrm{A} \cap \mathrm{C})=0.05$,
$\mathrm{P}(\mathrm{B} \cap \mathrm{C})=0.07$,
$\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0.01$.
Find the following:
a) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})$

b) $\quad \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$
c) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})$
d) $\quad \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}\right)$
e) $\quad P\left(A^{\prime} \cap B^{\prime} \cap C\right)$
f) $\quad \mathrm{P}\left(\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right) \cup \mathrm{C}\right)$
g) $\quad P((A \cup B) \cap C)$
h) $\quad \mathrm{P}\left(\left(\mathrm{B} \cap \mathrm{C}^{\prime}\right) \cup \mathrm{A}^{\prime}\right)$
6. Let $a>2$. Suppose $S=\{0,1,2,3, \ldots\}$ and

$$
\mathrm{P}(0)=c, \quad \mathrm{P}(k)=\frac{1}{a^{k}}, \quad k=1,2,3, \ldots
$$

a) Find the value of c (c will depend on a) that makes this is a valid probability distribution.
b) Find the probability of an odd outcome.
7. Suppose $S=\{0,1,2,3, \ldots\}$ and

$$
\mathrm{P}(0)=p, \quad \mathrm{P}(k)=\frac{1}{2^{k} \cdot k!}, \quad k=1,2,3, \ldots
$$

Find the value of p that would make this a valid probability model.

