Variance, covariance, and moment-generating functions

Practice problems - Solutions

1. Suppose that the cost of maintaining a car is given by a random variable, X, with mean 200 and variance 260 . If a tax of 20% is introducted on all items associated with the maintenance of the car, what will the variance of the cost of maintaining a car be?

Solution: The new cost is $1.2 X$, so its variance is $\operatorname{Var}(1.2 X)=1.2^{2} \operatorname{Var}(X)=1.44$. $260=374$.
2. The profit for a new product is given by $Z=3 X-Y-5$, where X and Y are independent random variables with $\operatorname{Var}(X)=1$ and $\operatorname{Var}(Y)=2$. What is the variance of Z ?

Solution: Using the properties of a variance, and independence, we get
$\operatorname{Var}(Z)=\operatorname{Var}(3 X-Y-5)=\operatorname{Var}(3 X-Y)=\operatorname{Var}(3 X)+\operatorname{Var}(-Y)=9 \operatorname{Var}(X)+\operatorname{Var}(Y)=11$.
3. An insurance policy pays a total medical benefit consisting of a part paid to the surgeon, X, and a part paid to the hospital, Y, so that the total benefit is $X+Y$. Suppose that $\operatorname{Var}(X)=5,000, \operatorname{Var}(Y)=10,000$, and $\operatorname{Var}(X+Y)=17,000$.
If X is increased by a flat amount of 100 , and Y is increased by 10%, what is the variance of the total benefit after these increases?

Solution: We need to compute $\operatorname{Var}(X+100+1.1 Y)$. Since adding constants does not change the variance, this is the same as $\operatorname{Var}(X+1.1 Y)$, which expands as follows:
$\operatorname{Var}(X+1.1 Y)=\operatorname{Var}(X)+\operatorname{Var}(1.1 Y)+2 \operatorname{Cov}(X, 1.1 Y)=\operatorname{Var}(X)+1.1^{2} \operatorname{Var}(Y)+2 \cdot 1.1 \operatorname{Cov}(X, Y)$.
We are given that $\operatorname{Var}(X)=5,000, \operatorname{Var}(Y)=10,000$, so the only remaining unknown quantity is $\operatorname{Cov}(X, Y)$, which can be computed via the general formula for $\operatorname{Var}(X+Y)$:
$\operatorname{Cov}(X, Y)=\frac{1}{2}(\operatorname{Var}(X+Y)-\operatorname{Var}(X)-\operatorname{Var}(Y))=\frac{1}{2}(17,000-5,000-10,000)=1,000$.
Substituting this into the above formula, we get the answer:

$$
\operatorname{Var}(X+1.1 Y)=5,000+1.1^{2} \cdot 10,000+2 \cdot 1.1 \cdot 1,000=19,520
$$

4. A company insures homes in three cities, J, K, L. The losses occurring in these cities are independent. The moment-generating functions for the loss distributions of the cities are

$$
M_{J}(t)=(1-2 t)^{-3}, \quad M_{K}(t)=(1-2 t)^{-2.5}, \quad M_{L}(t)=(1-2 t)^{-4.5}
$$

Let X represent the combined losses from the three cities. Calculate $E\left(X^{3}\right)$.
Solution: Let J, K, L denote the losses from the three cities. Then $X=J+K+L$.

Since J, K, L are independent, the moment-generating function for their sum, X, is equal to the product of the individual moment-generating functions, i.e.,

$$
M_{X}(t)=M_{K}(t) M_{J}(t) M_{L}(t)=(1-2 t)^{-3-2.5-4.5}=(1-2 t)^{-10} .
$$

Differentiating this function, we get

$$
\begin{aligned}
M^{\prime}(t) & =(-2)(-10)(1-2 t)^{-11} \\
M^{\prime \prime}(t) & =(-2)^{2}(-10)(-11)(1-2 t)^{-12} \\
M^{\prime \prime \prime}(t) & =(-2)^{3}(-10)(-11)(-12)(1-2 t)^{-13}
\end{aligned}
$$

Hence, $E\left(X^{3}\right)=M_{X}^{\prime \prime \prime}(0)=(-2)^{3}(-10)(-11)(-12)=10,560$.
5. Given that $E(X)=5, E\left(X^{2}\right)=27.4, E(Y)=7, E\left(Y^{2}\right)=51.4$ and $\operatorname{Var}(X+Y)=8$, find $\operatorname{Cov}(X+Y, X+1.2 Y)$.

Solution: By definition,

$$
\operatorname{Cov}(X+Y, X+1.2 Y)=E((X+Y)(X+1.2 Y))-E(X+Y) E(X+1.2 Y)
$$

Using the properties of expectation and the given data, we get

$$
\begin{aligned}
E(X+Y) E(X+1.2 Y) & =(E(X)+E(Y))(E(X)+1.2 E(Y))=(5+7)(5+1.2 \cdot 7)=160.8, \\
E((X+Y)(X+1.2 Y)) & =E\left(X^{2}\right)+2.2 E(X Y)+1.2 E\left(Y^{2}\right) \\
& =27.4+2.2 E(X Y)+1.2 \cdot 51.4=2.2 E(X Y)+89.08, \\
\operatorname{Cov}(X+Y, X+1.2 Y) & =2.2 E(X Y)+89.08-160.8=2.2 E(X Y)-71.72
\end{aligned}
$$

To complete the calculation, it remains to find $E(X Y)$. To this end we make use of the still unused relation $\operatorname{Var}(X+Y)=8$:

$$
\begin{aligned}
8=\operatorname{Var}(X+Y) & =E\left((X+Y)^{2}\right)-(E(X+Y))^{2}=E\left(X^{2}\right)+2 E(X Y)+E\left(Y^{2}\right)-(E(X)+E(Y))^{2} \\
& =27.4+2 E(X Y)+51.4-(5+7)^{2}=2 E(X Y)-65.2,
\end{aligned}
$$

so $E(X Y)=36.6$. Substituting this above gives $\operatorname{Cov}(X+Y, X+1.2 Y)=2.2 \cdot 36.6-$ $71.72=8.8$.

