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Joint Distributions, Discrete Case

In the following, X and Y are discrete random variables.

1. Joint distribution (joint p.m.f.):

• Definition: f(x, y) = P (X = x, Y = y)

• Properties: (1) f(x, y) ≥ 0, (2)
∑
x,y

f(x, y) = 1

• Representation: The most natural representation of a joint discrete distribution is as
a distribution matrix, with rows and columns indexed by x and y, and the xy-entry
being f(x, y). This is analogous to the representation of ordinary discrete distributions
as a single-row table. As in the one-dimensional case, the entries in a distribution matrix
must be nonnegative and add up to 1.

2. Marginal distributions: The distributions of X and Y , when considered separately.

• Definition:

• fX(x) = P (X = x) =
∑
y

f(x, y)

• fY (y) = P (Y = y) =
∑
x

f(x, y)

• Connection with distribution matrix: The marginal distributions fX(x) and fY (y)
can be obtained from the distribution matrix as the row sums and column sums of the
entries. These sums can be entered in the “margins” of the matrix as an additional
column and row.

• Expectation and variance: µX , µY , σ2
X , σ2

Y denote the (ordinary) expectations and
variances of X and Y , computed as usual: µX =

∑
x

xfX(x), etc.

3. Computations with joint distributions:

• Probabilities: Probabilities involving X and Y (e.g., P (X + Y = 3) or P (X ≥ Y ) can
be computed by adding up the corresponding entries in the distribution matrix: More
formally, for any set R of points in the xy-plane, P ((X, Y ) ∈ R)) =

∑
(x,y)∈R

f(x, y).

• Expectation of a function of X and Y (e.g., u(x, y) = xy): E(u(X, Y )) =∑
x,y

u(x, y)f(x, y). This formula can also be used to compute expectation and variance of

the marginal distributions directly from the joint distribution, without first computing
the marginal distribution. For example, E(X) =

∑
x,y

xf(x, y).

4. Covariance and correlation:

• Definitions: Cov(X, Y ) = E(XY )− E(X)E(Y ) = E((X − µX)(Y − µY )) (Covariance
of X and Y ), ρ = ρ(X, Y ) = Cov(X,Y )

σXσY
(Correlation of X and Y )

• Properties: |Cov(X, Y )| ≤ σXσY , −1 ≤ ρ(X, Y ) ≤ 1

• Relation to variance: Var(X) = Cov(X, X)

• Variance of a sum: Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ) (Note the analogy
of the latter formula to the identity (a + b)2 = a2 + b2 + 2ab; the covariance acts like a
“mixed term” in the expansion of Var(X + Y ).)
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5. Independence of random variables:

• Definition: X and Y are called independent if the joint p.m.f. is the product of the
individual p.m.f.’s: i.e., if f(x, y) = fX(x)fY (y) for all values of x and y.

• Properties of independent random variables:
If X and Y are independent, then:

– The expectation of the product of X and Y is the product of the individual
expectations: E(XY ) = E(X)E(Y ). More generally, this product formula holds
for any expectation of a function X times a function of Y . For example, E(X2Y 3) =
E(X2)E(Y 3).

– The product formula holds for probabilities of the form P(some condi-
tion on X, some condition on Y ) (where the comma denotes “and”): For
example, P (X ≤ 2, Y ≤ 3) = P (X ≤ 2)P (Y ≤ 3).

– The covariance and correlation of X and Y are 0: Cov(X, Y ) = 0, ρ(X, Y ) = 0.
– The variance of the sum of X and Y is the sum of the individual variances:

Var(X + Y ) = Var(X) + Var(Y )
– The moment-generating function of the sum of X and Y is the product

of the individual moment-generating functions: MX+Y (t) = MX(t)MY (t).
(Note that it is the sum X + Y , not the product XY , which has this property.)

6. Conditional distributions:

• Definitions:

– conditional distribution (p.m.f.) of X given that Y = y:
g(x|y) = P (X = x|Y = y) = f(x,y)

fY (y)

– conditional distribution (p.m.f.) of Y given that X = x:
h(y|x) = P (Y = y|X = x) = f(x,y)

fX(x)

• Connection with distribution matrix: Conditional distributions are the distribu-
tions obtained by fixing a row or column in the matrix and rescaling the entries in that
row or column so that they again add up to 1. For example, h(y|2), the conditional dis-
tribution of Y given that X = 2, is the distribution given by the entries in row 2 of the
matrix, rescaled by dividing by the row sum (namely, fX(2)): h(y|2) = f(2, y)/fX(2).

• Conditional expectations and variance: Conditional expectations, variances, etc.,
are defined and computed as usual, but with conditional distributions in place of ordinary
distributions:

• E(X|y) = E(X|Y = y) =
∑
x

xg(x|y)

• E(X2|y) = E(X2|Y = y) =
∑
x

x2g(x|y)

• Var(X|y) = Var(X|Y = y) = E(X2|y)− E(X|y)2

More generally, for any condition (such as Y > 0), the expectation of X given this
condition is defined as

• E(X| condition) =
∑
x

xP (X = x| condition)

and can be computed by starting out with the usual formula for the expectation, but
restricting to those terms that satisfy the condition.
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