The following are a number of practice problems that may be helpful for completing the homework, and will likely be very useful for studying for exams.

1. (Capture - Recapture) To estimate the populations size of unicorns in Neverland, first N_{1} unicorns were captured and tagged. The captured unicorns were then released. One month later, n unicorns were captured. Let X denote the number of tagged unicorns among the ones in the second sample.
a) Construct an estimator for the population size N .

Hint: Ask MoM.

X has Hypergeometric distribution.

$$
\mathrm{E}(\mathrm{X})=n \cdot \frac{\mathrm{~N}_{1}}{\mathrm{~N}}
$$

$$
\mathrm{X}=n \cdot \frac{\mathrm{~N}_{1}}{\tilde{\mathrm{~N}}} . \quad \Rightarrow \quad \tilde{\mathrm{N}}=\frac{n \cdot \mathrm{~N}_{1}}{\mathrm{X}}
$$

b) Suppose $\mathrm{N}_{1}=12, n=10$, and $x=3$. Obtain $\tilde{\mathrm{N}}$, an estimate for the population size N .

$$
\tilde{\mathrm{N}}=\frac{n \cdot \mathrm{~N}_{1}}{x}=\frac{10 \cdot 12}{3}=40
$$

c) Suppose $N=33, N_{1}=12$, and $n=10$. Find the probability that \tilde{N} is within 10 of N. That is, find the probability $\mathrm{P}(23 \leq \tilde{N} \leq 43)$.

x	0	1	2	3	4	5	6	7	8	9	10
\tilde{N}	∞	120	60	40	30	24	20	~ 17	15	~ 13	12

$$
\begin{aligned}
P(23 \leq \tilde{\mathrm{N}} \leq 43)=P(3 \leq X \leq 5) & =\frac{\binom{12}{3}\binom{21}{7}}{\binom{33}{10}}+\frac{\binom{12}{4}\binom{21}{6}}{\binom{33}{10}}+\frac{\binom{12}{5}\binom{21}{5}}{\binom{33}{10}} \\
& \approx 0.2764+0.2902+0.1741=\mathbf{0 . 7 4 0 7}
\end{aligned}
$$

2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from the distribution with probability density function

$$
f(x ; \lambda)=\frac{2 \sqrt{\lambda}}{\sqrt{\pi}} e^{-\lambda x^{2}}, \quad x>0, \quad \lambda>0 .
$$

a) Obtain the maximum likelihood estimator of $\lambda, \hat{\lambda}$.

$$
\mathrm{L}(\lambda)=\prod_{i=1}^{n}\left(\frac{2 \sqrt{\lambda}}{\sqrt{\pi}} e^{-\lambda x_{i}^{2}}\right)
$$

$\ln \mathrm{L}(\lambda)=n \cdot \ln 2+\frac{n}{2} \cdot \ln \lambda-\frac{n}{2} \cdot \ln \pi-\lambda \cdot \sum_{i=1}^{n} x_{i}^{2}$.
$(\ln \mathrm{L}(\lambda))^{\prime}=\frac{n}{2 \lambda}-\sum_{i=1}^{n} x_{i}^{2}=0 . \quad \Rightarrow \quad \hat{\lambda}=\frac{n}{2 \sum_{i=1}^{n} X_{i}^{2}}$.
d) Suppose $n=4, \quad$ and $\quad x_{1}=0.2, \quad x_{2}=0.6, \quad x_{3}=1.1, \quad x_{4}=1.7$.

Find the maximum likelihood estimate of λ.
$x_{1}=0.2, \quad x_{2}=0.6, \quad x_{3}=1.1, \quad x_{4}=1.7$.

$$
\sum_{i=1}^{n} x_{i}^{2}=4.5 . \quad \hat{\lambda}=\frac{\mathbf{4}}{\mathbf{9}} \approx 0.444
$$

c) Obtain the method of moments estimator of $\lambda, \tilde{\lambda}$.

$$
\begin{array}{rlrl}
\mathrm{E}(\mathrm{X}) & =\int_{0}^{\infty} x \cdot \frac{2 \sqrt{\lambda}}{\sqrt{\pi}} e^{-\lambda x^{2}} d x & & u=\lambda x^{2} \\
& =\int_{0}^{\infty} \frac{1}{\sqrt{\pi \lambda}} e^{-u} d u=\frac{1}{\sqrt{\pi \lambda}} . & & \\
\bar{X}=\frac{1}{\sqrt{\pi \lambda}} . & \Rightarrow & \tilde{\lambda}=\frac{1}{\pi(\overline{\mathrm{X}})^{2}} .
\end{array}
$$

d) Suppose $n=4, \quad$ and $\quad x_{1}=0.2, \quad x_{2}=0.6, \quad x_{3}=1.1, \quad x_{4}=1.7$.

Find a method of moments estimate of λ.

$$
\begin{array}{cr}
x_{1}=0.2, \quad x_{2}=0.6, \quad x_{3}=1.1, \quad x_{4}=1.7 \\
\bar{x}=0.9 . & \tilde{\lambda} \approx 0.393 .
\end{array}
$$

3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the distribution with probability density function

$$
f_{\mathrm{X}}(x)=f_{\mathrm{X}}(x ; \theta)=\left(\theta^{2}+\theta\right) x^{\theta-1}(1-x), \quad 0<x<1, \quad \theta>0 .
$$

a) Obtain the method of moments estimator of $\theta, \tilde{\theta}$.

$$
\begin{aligned}
& E(X)=\int_{0}^{1} x \cdot\left(\theta^{2}+\theta\right) x^{\theta-1}(1-x) d x=\left(\theta^{2}+\theta\right) \cdot \int_{0}^{1}\left(x^{\theta}-x^{\theta+1}\right) d x \\
&=\left.\theta \cdot(\theta+1) \cdot\left(\frac{1}{\theta+1} x^{\theta+1}-\frac{1}{\theta+2} x^{\theta+2}\right)\right|_{0} ^{1}=\frac{\theta \cdot(\theta+1)}{(\theta+1) \cdot(\theta+2)}=\frac{\theta}{\theta+2} . \\
& \text { OR }
\end{aligned}
$$

Beta distribution, $\alpha=\theta, \beta=2 . \quad \Rightarrow \quad E(X)=\frac{\theta}{\theta+2}$.

$$
\begin{array}{ll}
\frac{\tilde{\theta}}{\tilde{\theta}+2}=\overline{\mathrm{X}} & \tilde{\theta}=\overline{\mathrm{X}} \cdot(\tilde{\theta}+2) \\
\Rightarrow \quad \tilde{\theta}=\frac{2 \overline{\mathrm{X}}}{1-\overline{\mathrm{X}}}, \quad \text { where } \overline{\mathrm{X}}=\frac{1}{n} \cdot \sum_{i=1}^{n} \mathrm{X}_{i} . & \overline{\mathrm{X}}=2 \overline{\mathrm{X}}
\end{array}
$$

b) Is $\tilde{\theta}$ an unbiased estimator of θ ? Justify your answer.

Consider $g(x)=\frac{2 x}{1-x} . \quad$ Then $g(\overline{\mathrm{X}})=\tilde{\theta}, \quad g\left(\frac{\theta}{\theta+2}\right)=\theta$.
Also $g^{\prime \prime}(x)=\frac{4}{(1-x)^{3}}>0$ for $0<x<1$, i.e., $g(x)$ is strictly convex.

By Jensen’s Inequality,

$$
\mathrm{E}(\tilde{\theta})=\mathrm{E}[g(\overline{\mathrm{X}})]>g(\mathrm{E}(\overline{\mathrm{X}}))=g\left(\mu_{\mathrm{X}}\right)=g\left(\frac{\theta}{\theta+2}\right)=\theta .
$$

Therefore, $\tilde{\theta}$ is NOT an unbiased estimator of θ.
c) Suppose $n=6$, and $x_{1}=0.3, x_{2}=0.5, x_{3}=0.6, x_{4}=0.65, x_{5}=0.75, x_{6}=0.8$. Find a method of moments estimate of θ.

$$
\begin{aligned}
& x_{1}=0.3, \quad x_{2}=0.5, \quad x_{3}=0.6, \quad x_{4}=0.65, \quad x_{5}=0.75, \quad x_{6}=0.8 . \\
& \bar{x}=0.6 . \\
& \tilde{\theta}=3 .
\end{aligned}
$$

4. Let $\theta>0$ and let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Uniform distribution on interval $(0, \theta)$.
a) Obtain the method of moments estimator of $\theta, \tilde{\theta}$.

$$
\mathrm{E}(\mathrm{X})=\frac{\theta}{2} . \quad \Rightarrow \quad \overline{\mathrm{X}}=\frac{\tilde{\theta}}{2} . \quad \Rightarrow \quad \tilde{\theta}=2 \overline{\mathrm{X}}
$$

b) Is $\tilde{\theta}$ an unbiased estimator of θ ? Justify your answer.

$$
\mathrm{E}(\overline{\mathrm{X}})=\mathrm{E}(\mathrm{X})=\frac{\theta}{2} . \quad \Rightarrow \quad \mathrm{E}(\tilde{\theta})=\mathrm{E}(2 \overline{\mathrm{X}})=\theta
$$

$\tilde{\theta}$ is unbiased for θ.
c) Find $\operatorname{Var}(\tilde{\theta})$.
$\tilde{\theta}=2 \overline{\mathrm{X}} . \quad \operatorname{Var}(\tilde{\theta})=\operatorname{Var}(2 \overline{\mathrm{X}})=4 \operatorname{Var}(\overline{\mathrm{X}})=4 \cdot \frac{\sigma^{2}}{n}$.
For $\operatorname{Uniform}(0, \theta), \quad \sigma^{2}=\frac{\theta^{2}}{12} . \quad \operatorname{Var}(\tilde{\theta})=\frac{\theta^{2}}{3 \cdot n}$.
d) Find $\operatorname{MSE}(\tilde{\theta})$.
$\operatorname{bias}(\tilde{\theta})=\mathrm{E}(\tilde{\theta})-\theta=0$ and $\operatorname{Var}(\tilde{\theta})=\frac{\theta^{2}}{3 \cdot n}$.
$\Rightarrow \quad \operatorname{MSE}(\tilde{\theta})=\mathrm{E}\left[(\tilde{\theta}-\theta)^{2}\right]=(\operatorname{bias}(\tilde{\theta}))^{2}+\operatorname{Var}(\tilde{\theta})=0+\frac{\theta^{2}}{3 \cdot n}=\frac{\theta^{2}}{3 \cdot n}$.

Note that $\quad \operatorname{MSE}(\tilde{\theta})=\frac{\theta^{2}}{3 \cdot n} \rightarrow 0 \quad$ as $n \rightarrow \infty$.
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the distribution with probability density function

$$
f(x ; \theta)=\frac{3+\theta x}{12+8 \theta}, \quad 0<x<4, \quad \theta>-\frac{3}{4} .
$$

a) Find the method of moments estimator of $\theta, \tilde{\theta}$.

$$
\begin{aligned}
& \mu=\mathrm{E}(\mathrm{X})=\int_{0}^{4} x \cdot \frac{3+\theta x}{12+8 \theta} d x=\frac{1}{12+8 \theta} \cdot \int_{0}^{4}\left(3 x+\theta x^{2}\right) d x \\
& \quad=\left.\frac{1}{12+8 \theta} \cdot\left(\frac{3 x^{2}}{2}+\frac{\theta x^{3}}{3}\right)\right|_{0} ^{4}=\frac{24+\frac{64}{3} \theta}{12+8 \theta}=\frac{72+64 \theta}{36+24 \theta}=\frac{18+16 \theta}{9+6 \theta} . \\
& \overline{\mathrm{X}}=\frac{18+16 \tilde{\theta}}{9+6 \tilde{\theta}} . \\
& \Rightarrow \quad \tilde{\mathrm{X}}+6 \overline{\mathrm{X}} \tilde{\theta}=18+16 \tilde{\theta} . \\
& \Rightarrow \quad \tilde{\theta}=\frac{12 \overline{\mathrm{X}}-24}{\frac{64}{3}-8 \overline{\mathrm{X}}}=\frac{3 \overline{\mathrm{X}}-6}{\frac{16}{3}-2 \overline{\mathrm{X}}}=\frac{36 \overline{\mathrm{X}}-72}{64-24 \overline{\mathrm{X}}}=\frac{9 \overline{\mathrm{X}}-18}{16-6 \overline{\mathrm{X}}} .
\end{aligned}
$$

b) Suppose $n=5$, and $x_{1}=1.2, x_{2}=1.8, x_{3}=2.6, x_{4}=3.1, x_{5}=3.8$.

Find the method of moments estimate of θ.

$$
\begin{array}{ll}
x_{1}=1.2, \quad x_{2}=1.8, \quad x_{3}=2.6, \quad x_{4}=3.1, \quad x_{5}=3.8 . & \bar{x}=2.5 . \\
& \tilde{\theta}=4.5 .
\end{array}
$$

c) Suppose $n=4$, and $x_{1}=1.3, \quad x_{2}=2.2, \quad x_{3}=3.1, \quad x_{4}=3.8$.

Find the method of moments estimate of θ.

$$
\begin{array}{ll}
x_{1}=1.3, \quad x_{2}=2.2, \quad x_{3}=3.1, \quad x_{4}=3.8 . & \bar{x}=2.6 . \\
& \tilde{\theta}=\mathbf{1 3 . 5} .
\end{array}
$$

6. 6.4-12 6.1-12 6.2-12

Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ be a random sample from $\operatorname{Binomial}(1, p)$ (i.e., n Bernoulli trials $)$. Thus

$$
\mathrm{Y}=\sum_{i=1}^{n} \mathrm{X}_{i} \quad \text { is } \operatorname{Binomial}(n, p)
$$

a) Show that $\bar{X}=\frac{\mathrm{Y}}{n}$ is an unbiased estimator of p.

$$
\mathrm{E}(\mathrm{Y})=n p . \quad \Rightarrow \quad \mathrm{E}(\overline{\mathrm{X}})=\mathrm{E}\left(\frac{\mathrm{Y}}{n}\right)=\frac{1}{n} \mathrm{E}(\mathrm{Y})=\frac{n p}{n}=p
$$

b) Show that $\operatorname{Var}(\overline{\mathrm{X}})=\frac{p(1-p)}{n}$.
$\operatorname{Var}(\mathrm{Y})=n p(1-p)$.
$\operatorname{Var}(\overline{\mathrm{X}})=\operatorname{Var}\left(\frac{\mathrm{Y}}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}(\mathrm{Y})=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n}$.
c) Show that $\mathrm{E}\left[\frac{\overline{\mathrm{X}}(1-\overline{\mathrm{X}})}{n}\right]=(n-1)\left[\frac{p(1-p)}{n^{2}}\right]$.

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}^{2}\right)=\operatorname{Var}(\mathrm{Y})+[\mathrm{E}(\mathrm{Y})]^{2}=n p(1-p)+n^{2} p^{2} . \\
& \mathrm{E}(\overline{\mathrm{X}}(1-\overline{\mathrm{X}}))=\mathrm{E}\left(\frac{\mathrm{Y}}{n}\right)-\mathrm{E}\left(\frac{\mathrm{Y}^{2}}{n^{2}}\right)=p-\frac{p(1-p)}{n}-p^{2}=(n-1)\left[\frac{p(1-p)}{n}\right] . \\
& \Rightarrow \quad \mathrm{E}\left[\frac{\overline{\mathrm{X}}(1-\overline{\mathrm{X}})}{n}\right]=(n-1)\left[\frac{p(1-p)}{n^{2}}\right] .
\end{aligned}
$$

d) Find the value of c so that $c \bar{X}(1-\overline{\mathrm{X}})$ is an unbiased estimator of $\operatorname{Var}(\overline{\mathrm{X}})=\frac{p(1-p)}{n}$.

$$
\begin{aligned}
\mathrm{E}(\overline{\mathrm{X}}(1-\overline{\mathrm{X}}))=(n-1)\left[\frac{p(1-p)}{n}\right] . & \Rightarrow \mathrm{E}\left(\frac{1}{(n-1)} \overline{\mathrm{X}}(1-\overline{\mathrm{X}})\right)=\frac{p(1-p)}{n} . \\
& \Rightarrow \quad c=\frac{1}{(n-1)}
\end{aligned}
$$

7-8. Let $\lambda>0$ and let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the distribution with the probability density function

$$
f(x ; \lambda)=2 \lambda^{2} x^{3} e^{-\lambda x^{2}}, \quad x>0
$$

7. a) Find $E\left(X^{k}\right), k>-4$.

Hint 1: Consider $u=\lambda x^{2}$ or $u=x^{2}$.
Hint 2: $\quad \Gamma(a)=\int_{0}^{\infty} u^{a-1} e^{-u} d u, \quad a>0$.

$$
\text { Hint 3: } \quad \Gamma(a)=(a-1) \Gamma(a-1) .
$$

Hint 4: $\quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{X}^{k}\right) & =\int_{0}^{\infty} x^{k} \cdot 2 \lambda^{2} x^{3} e^{-\lambda x^{2}} d x \quad u=\lambda x^{2} \quad d u=2 \lambda x d x \\
& =\lambda \cdot \int_{0}^{\infty}\left(\frac{u}{\lambda}\right)^{\frac{k}{2}+1} e^{-u} d u=\lambda^{-k / 2} \cdot \int_{0}^{\infty} u^{\frac{k}{2}+1} e^{-u} d u=\lambda^{-k / 2} \Gamma\left(\frac{k}{2}+2\right) . \\
\mathrm{E}\left(\mathrm{X}^{k}\right) & =\int_{0}^{\infty} x^{k} \cdot 2 \lambda^{2} x^{3} e^{-\lambda x^{2}} d x \quad u=x^{2} \quad d u=2 x d x \\
& =\lambda^{2} \cdot \int_{0}^{\infty} u^{\frac{k}{2}+1} e^{-\lambda u} d u \quad \lambda^{-k / 2} \Gamma\left(\frac{k}{2}+2\right) \cdot \int_{0}^{\infty} \frac{1}{\Gamma\left(\frac{k}{2}+2\right)} \lambda^{\frac{k}{2}+2} u^{\frac{k}{2}+1} e^{-\lambda u} d u=\lambda^{-k / 2} \Gamma\left(\frac{k}{2}+2\right), \\
& =\frac{1}{\Gamma\left(\frac{k}{2}+2\right)} \lambda^{\frac{k}{2}+2} u^{\frac{k}{2}+1} e^{-\lambda u} \text { is the p.d.f. of Gamma }\left(\alpha=\frac{k}{2}+2, \theta=\frac{1}{\lambda}\right) .
\end{aligned}
$$

b) Obtain a method of moments estimator of $\lambda, \tilde{\lambda}$.

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\lambda^{-1 / 2} \Gamma\left(\frac{1}{2}+2\right)=\lambda^{-1 / 2} \cdot \Gamma\left(\frac{5}{2}\right)=\lambda^{-1 / 2} \cdot \frac{3}{2} \cdot \Gamma\left(\frac{3}{2}\right) \\
& =\lambda^{-1 / 2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma\left(\frac{1}{2}\right)=\lambda^{-1 / 2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi}=\frac{3}{4} \cdot \sqrt{\frac{\pi}{\lambda}} \cdot \\
& \begin{aligned}
\frac{3}{4} \cdot \sqrt{\frac{\pi}{\lambda}}=\overline{\mathrm{X}} \quad \Rightarrow \quad \tilde{\lambda}_{1}=\frac{9 \pi}{16(\overline{\mathrm{X}})^{2}} . \\
\mathrm{E}\left(\mathrm{X}^{2}\right)=\lambda^{-2 / 2} \Gamma\left(\frac{2}{2}+2\right)=\lambda^{-1} \cdot \Gamma(3)=\lambda^{-1} \cdot 2!=\frac{2}{\lambda} . \\
\frac{\mathrm{OR}}{\lambda}=\frac{\mathrm{X}^{2}}{\lambda}=\frac{1}{n} \cdot \sum_{i=1}^{n} \mathrm{X}_{i}^{2}
\end{aligned} \quad \Rightarrow \quad \tilde{\lambda}_{2}=\frac{2}{\mathrm{X}^{2}}=\frac{2 n}{\sum_{i=1}^{n} \mathrm{X}_{i}^{2}} .
\end{aligned}
$$

c) Suppose $n=5, \quad$ and $\quad x_{1}=0.6, \quad x_{2}=1.1, \quad x_{3}=2.7, \quad x_{4}=3.3, \quad x_{5}=4.5$.

Find a method of moments estimate of λ.

$$
\begin{array}{cc}
x_{1}=0.6, \quad x_{2}=1.1, \quad x_{3}=2.7, \quad x_{4}=3.3, \quad x_{5}=4.5 . & \bar{x}=\frac{12.2}{5}=2.44 . \\
\tilde{\lambda}_{1}=\frac{9 \pi}{16(\bar{x})^{2}} \approx 0.09448 \pi \approx 0.29682 . \\
\text { OR } \\
x_{1}=0.6, \quad x_{2}=1.1, \quad x_{3}=2.7, \quad x_{4}=3.3, \quad x_{5}=4.5 . \quad \sum_{i=1}^{n} x_{i}^{2}=40 . \\
\tilde{\lambda}_{2}=\frac{2 n}{\sum_{i=1}^{n} x_{i}^{2}}=0.25 .
\end{array}
$$

8. d) Obtain the maximum likelihood estimator of $\lambda, \hat{\lambda}$.

$$
\mathrm{L}(\lambda)=\prod_{i=1}^{n}\left(2 \lambda^{2} x_{i}^{3} e^{-\lambda x_{i}^{2}}\right)
$$

$$
\ln L(\lambda)=n \cdot \ln 2+2 n \cdot \ln \lambda+\sum_{i=1}^{n} \ln \left(x_{i}^{3}\right)-\lambda \cdot \sum_{i=1}^{n} x_{i}^{2}
$$

$$
(\ln \mathrm{L}(\lambda))^{\prime}=\frac{2 n}{\lambda}-\sum_{i=1}^{n} x_{i}^{2}=0 . \quad \Rightarrow \quad \hat{\lambda}=\frac{2 n}{\sum_{i=1}^{n} \mathrm{X}_{i}^{2}}
$$

e) Suppose $n=5, \quad$ and $\quad x_{1}=0.6, \quad x_{2}=1.1, \quad x_{3}=2.7, \quad x_{4}=3.3, \quad x_{5}=4.5$. Find the maximum likelihood estimate of λ.

$$
\begin{aligned}
& x_{1}=0.6, \quad x_{2}=1.1, \quad x_{3}=2.7, \quad x_{4}=3.3, \quad x_{5}=4.5 . \quad \sum_{i=1}^{n} x_{i}^{2}=40 . \\
& \hat{\lambda}=\frac{2 n}{\sum_{i=1}^{n} x_{i}^{2}}=0.25
\end{aligned}
$$

f) Suppose $n=5, \quad$ and $\quad x_{1}=0.5, \quad x_{2}=1.2, \quad x_{3}=0.4, \quad x_{4}=0.8, \quad x_{5}=0.1$.

Find the maximum likelihood estimate of λ.

$$
\begin{aligned}
& x_{1}=0.5, \quad x_{2}=1.2, \quad x_{3}=0.4, \quad x_{4}=0.8, \quad x_{5}=0.1 . \quad \sum_{i=1}^{n} x_{i}^{2}=2.5 . \\
& \hat{\lambda}=\frac{2 n}{\sum_{i=1}^{n} x_{i}^{2}}=4 .
\end{aligned}
$$

9. A random sample of size $n=16$ from $N\left(\mu, \sigma^{2}=64\right)$ yielded $\bar{x}=85$.

Construct the following confidence intervals for μ :
$\bar{x}=85$
$\sigma=8$
$n=16$
σ is known.
The confidence interval :

$$
\overline{\mathrm{X}} \pm \mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{n}} .
$$

a) 95%.
$\alpha=0.05 \quad \alpha / 2=0.025 . \quad \mathrm{z}_{\alpha / 2}=1.96$.
$85 \pm 1.96 \cdot \frac{8}{\sqrt{16}} \quad \mathbf{8 5} \pm \mathbf{3 . 9 2}$
(81.08 ; 88.92)
b) 90%.
$\alpha=0.10 \quad \alpha / 2=0.05 . \quad \mathrm{z}_{\alpha / 2}=1.645$.
$85 \pm 1.645 \cdot \frac{8}{\sqrt{16}} \quad \mathbf{8 5} \pm \mathbf{3 . 2 9}$
(81.71 ; 88.29)
c) 80%.
$\alpha=0.20 \quad \alpha / 2=0.10 . \quad \mathrm{z}_{\alpha / 2}=1.28$.
$85 \pm 1.28 \cdot \frac{8}{\sqrt{16}}$
85 ± 2.56
(82.44 ; 87.56)

OR
$\alpha=0.20 \quad \alpha / 2=0.10 . \quad \mathrm{z}_{\alpha / 2}=1.282$.
$85 \pm 1.282 \cdot \frac{8}{\sqrt{16}} \quad \mathbf{8 5} \pm \mathbf{2 . 5 6 4}$
(82.436 ; 87.564)
10. What is the minimum sample size required for estimating μ for $N\left(\mu, \sigma^{2}=64\right)$ to within ± 3 with confidence level
$\varepsilon=10, \quad \sigma=8$.
$n=\left(\frac{\mathrm{z}_{\alpha / 2} \cdot \sigma}{\varepsilon}\right)^{2}=\left(\frac{\mathrm{z}_{\alpha / 2} \cdot 8}{3}\right)^{2}$.
a) $95 \% \quad \alpha=0.05 \quad \alpha / 2=0.025 . \quad \mathrm{z}_{\alpha / 2}=1.96$.
$n=\left(\frac{\mathrm{z}_{\alpha / 2} \cdot \sigma}{\varepsilon}\right)^{2}=\left(\frac{1.96 \cdot 8}{3}\right)^{2} \approx 27.318 . \quad$ Round up.
b) 90%.
$n=\left(\frac{\mathrm{z}_{\alpha / 2} \cdot \sigma}{\varepsilon}\right)^{2}=\left(\frac{1.645 \cdot 8}{3}\right)^{2} \approx 19.243 . \quad$ Round up. $\quad n=\mathbf{2 0}$.
c) $\quad 80 \% . \quad \alpha=0.20 \quad \alpha / 2=0.10 . \quad \mathrm{z}_{\alpha / 2}=1.28$.

$$
\begin{array}{cc}
n=\left(\frac{\mathrm{z}_{\alpha / 2} \cdot \sigma}{\varepsilon}\right)^{2}=\left(\frac{1.28 \cdot 8}{3}\right)^{2} \approx 11.651 . & \text { Round up. } \\
\text { OR } & n=12 . \\
\alpha=0.20 \quad \alpha / 2=0.10 . & \mathrm{z}_{\alpha / 2}=1.282 . \\
n=\left(\frac{\mathrm{z}_{\alpha / 2} \cdot \sigma}{\varepsilon}\right)^{2}=\left(\frac{1.282 \cdot 8}{3}\right)^{2} \approx 11.687 . & \text { Round up. }
\end{array}
$$

