The following are a number of practice problems that may be helpful for completing the homework, and will likely be very useful for studying for exams.

1. (Capture - Recapture) To estimate the populations size of unicorns in Neverland, first N_{1} unicorns were captured and tagged. The captured unicorns were then released. One month later, n unicorns were captured. Let X denote the number of tagged unicorns among the ones in the second sample.
a) Construct an estimator for the population size $\mathrm{N} . \quad$ Hint: Ask MoM.
b) Suppose $\mathrm{N}_{1}=12, n=10$, and $x=3$. Obtain $\tilde{\mathrm{N}}$, an estimate for the population size N .
c) Suppose $N=33, N_{1}=12$, and $n=10$. Find the probability that \tilde{N} is within 10 of N. That is, find the probability $\mathrm{P}(23 \leq \tilde{N} \leq 43)$.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from the distribution with probability density function

$$
f(x ; \lambda)=\frac{2 \sqrt{\lambda}}{\sqrt{\pi}} e^{-\lambda x^{2}}, \quad x>0, \quad \lambda>0
$$

a) Obtain the maximum likelihood estimator of $\lambda, \hat{\lambda}$.
d) Suppose $n=4, \quad$ and $\quad x_{1}=0.2, \quad x_{2}=0.6, \quad x_{3}=1.1, \quad x_{4}=1.7$.

Find the maximum likelihood estimate of λ.
c) Obtain the method of moments estimator of $\lambda, \tilde{\lambda}$.
d) Suppose $n=4, \quad$ and $\quad x_{1}=0.2, \quad x_{2}=0.6, \quad x_{3}=1.1, \quad x_{4}=1.7$.

Find a method of moments estimate of λ.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the distribution with probability density function

$$
f_{\mathrm{X}}(x)=f_{\mathrm{X}}(x ; \theta)=\left(\theta^{2}+\theta\right) x^{\theta-1}(1-x), \quad 0<x<1, \quad \theta>0 .
$$

a) Obtain the method of moments estimator of $\theta, \tilde{\theta}$.
b) Is $\tilde{\theta}$ an unbiased estimator of θ ? Justify your answer.
c) Suppose $n=6$, and $x_{1}=0.3, x_{2}=0.5, x_{3}=0.6, x_{4}=0.65, x_{5}=0.75, x_{6}=0.8$. Find a method of moments estimate of θ.
4. Let $\theta>0$ and let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Uniform distribution on interval $(0, \theta)$.
a) Obtain the method of moments estimator of $\theta, \tilde{\theta}$.
b) Is $\tilde{\theta}$ an unbiased estimator of θ ? Justify your answer.
c) Find $\operatorname{Var}(\tilde{\theta})$.
d) $\operatorname{Find} \operatorname{MSE}(\tilde{\theta})$.
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the distribution with probability density function

$$
f(x ; \theta)=\frac{3+\theta x}{12+8 \theta}, \quad 0<x<4, \quad \theta>-\frac{3}{4} .
$$

a) Find the method of moments estimator of $\theta, \tilde{\theta}$.
b) Suppose $n=5, \quad$ and $\quad x_{1}=1.2, \quad x_{2}=1.8, \quad x_{3}=2.6, x_{4}=3.1, \quad x_{5}=3.8$.

Find the method of moments estimate of θ.
c) Suppose $n=4$, and $x_{1}=1.3, \quad x_{2}=2.2, \quad x_{3}=3.1, \quad x_{4}=3.8$.

Find the method of moments estimate of θ.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $\operatorname{Binomial}(1, p)$ (i.e., n Bernoulli trials $)$. Thus

$$
\mathrm{Y}=\sum_{i=1}^{n} \mathrm{X}_{i} \quad \text { is } \operatorname{Binomial}(n, p)
$$

a) Show that $\overline{\mathrm{X}}=\frac{\mathrm{Y}}{n}$ is an unbiased estimator of p.
b) Show that $\operatorname{Var}(\overline{\mathrm{X}})=\frac{p(1-p)}{n}$.
c) Show that $\mathrm{E}\left[\frac{\overline{\mathrm{X}}(1-\overline{\mathrm{X}})}{n}\right]=(n-1)\left[\frac{p(1-p)}{n^{2}}\right]$.
d) Find the value of c so that $c \overline{\mathrm{X}}(1-\overline{\mathrm{X}})$ is an unbiased estimator of $\operatorname{Var}(\overline{\mathrm{X}})=\frac{p(1-p)}{n}$.

7-8. Let $\lambda>0$ and let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the distribution with the probability density function

$$
f(x ; \lambda)=2 \lambda^{2} x^{3} e^{-\lambda x^{2}}, \quad x>0
$$

7. a) Find $E\left(X^{k}\right), k>-4$.

Hint 1: Consider $u=\lambda x^{2}$ or $u=x^{2}$.
Hint 2: $\quad \Gamma(a)=\int_{0}^{\infty} u^{a-1} e^{-u} d u, \quad a>0$.
Hint 3: $\quad \Gamma(a)=(a-1) \Gamma(a-1) . \quad$ Hint 4: $\quad \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
b) Obtain a method of moments estimator of $\lambda, \tilde{\lambda}$.
c) Suppose $n=5, \quad$ and $x_{1}=0.6, x_{2}=1.1, x_{3}=2.7, x_{4}=3.3, \quad x_{5}=4.5$. Find a method of moments estimate of λ.
8. d) Obtain the maximum likelihood estimator of $\lambda, \hat{\lambda}$.
e) Suppose $n=5$, and $x_{1}=0.6, x_{2}=1.1, x_{3}=2.7, x_{4}=3.3, x_{5}=4.5$. Find the maximum likelihood estimate of λ.
f) Suppose $n=5$, and $x_{1}=0.5, \quad x_{2}=1.2, \quad x_{3}=0.4, \quad x_{4}=0.8, \quad x_{5}=0.1$. Find the maximum likelihood estimate of λ.
9. A random sample of size $n=16$ from $N\left(\mu, \sigma^{2}=64\right)$ yielded $\bar{x}=85$.

Construct the following confidence intervals for μ :
a) 95%.
b) 90%.
c) $\quad 80 \%$.
10. What is the minimum sample size required for estimating μ for $N\left(\mu, \sigma^{2}=64\right)$ to within ± 3 with confidence level
a) 95%.
b) $\quad 90 \%$.
c) 80%.

