The following are a number of practice problems that may be helpful for completing the homework, and will likely be very useful for studying for exams.

1. 1.2-10 1.3-14 1.33-14

Prove (show) that

$$
\binom{n-1}{r}+\binom{n-1}{r-1}=\binom{n}{r}
$$

(Pascal's equation).

$$
\begin{aligned}
\binom{n-1}{r}+\binom{n-1}{r-1} & =\frac{(n-1)!}{r!\cdot(n-r-1)!}+\frac{(n-1)!}{(r-1)!\cdot(n-r)!} \\
& =\frac{(n-1)!}{(r-1)!\cdot(n-r-1)!} \cdot\left[\frac{1}{r}+\frac{1}{n-r}\right] \\
& =\frac{(n-1)!}{(r-1)!\cdot(n-r-1)!} \cdot \frac{n}{r \cdot(n-r)}=\frac{n!}{r!\cdot(n-r)!}=\binom{n}{r}
\end{aligned}
$$

2. 1.2-16 1.3-20

A box of candy hearts contains 52 hearts, of which 19 are white, 10 are tan, 7 are pink, 3 are purple, 5 are yellow, 2 are orange, and 6 are green. If you select 9 pieces of candy randomly from the box, without replacement, give the probability that
a) Three of the hearts are white.

$$
\frac{\binom{19}{3} \cdot\binom{52-19}{6}}{\binom{52}{9}}=\frac{969 \cdot 1,107,568}{3,679,075,400}=\frac{102,486}{351,325} \approx 0.291713 .
$$

b) Three are white, 2 are tan, 1 is pink, 1 is yellow, and 2 are green.

$$
\frac{\binom{19}{3} \cdot\binom{10}{2} \cdot\binom{7}{1} \cdot\binom{3}{0} \cdot\binom{5}{1} \cdot\binom{2}{0} \cdot\binom{6}{2}}{\binom{52}{9}}=\frac{969 \cdot 45 \cdot 7 \cdot 1 \cdot 5 \cdot 1 \cdot 15}{3,679,075,400}=\frac{7,695}{1,236,664} \approx 0.0062224 .
$$

3. Peter takes Computer Science classes, though not to learn, but to meet smart girls. There are 15 other students in the class with Peter, 7 of them are girls. During the semester, students will be working on a project in teams of 4 students. Suppose the students are divided into teams at random.

Peter's team $=$ Peter +3 (randomly chosen) students.
Students are selected at random without replacement.
a) Find the probability that at least 2 out of 3 students on Peter's team are girls.

$$
\frac{{ }_{7} C_{2} \cdot{ }_{8} C_{1}}{{ }_{15} C_{3}}+\frac{{ }_{7} C_{3} \cdot{ }_{8} C_{0}}{{ }_{15} C_{3}}=\frac{21 \cdot 8}{455}+\frac{35 \cdot 1}{455}=\frac{203}{455}=\frac{\mathbf{2 9}}{\mathbf{6 5}} \approx 0.446154
$$

b) Find the probability that there is at least 1 girl on Peter's team.

$$
\begin{aligned}
& 1-\frac{{ }_{7} C_{0} \cdot{ }_{8} C_{3}}{{ }_{15} C_{3}}=1-\frac{1 \cdot 56}{455}=\frac{399}{455}=\frac{\mathbf{5 7}}{\mathbf{6 5}} \approx 0.876923 \\
& \text { OR } \\
& \frac{{ }_{7} C_{1} \cdot{ }_{8} C_{2}}{{ }_{15} C_{3}}+\frac{{ }_{7} C_{2} \cdot{ }_{8} C_{1}}{{ }_{15} C_{3}}+\frac{{ }_{7} C_{3} \cdot{ }_{8} C_{0}}{{ }_{15} C_{3}}=\frac{7 \cdot 28}{455}+\frac{21 \cdot 8}{455}+\frac{35 \cdot 1}{455} \\
& = \\
& \frac{399}{455}=\frac{\mathbf{5 7}}{\mathbf{6 5}} \approx 0.876923 .
\end{aligned}
$$

c) Find the probability that at most 2 out of 3 students on Peter's team are girls.

$$
\begin{aligned}
& 1-\frac{{ }_{7} C_{3} \cdot{ }_{8} C_{0}}{{ }_{15} C_{3}}=1-\frac{35 \cdot 1}{455}=\frac{420}{455}=\frac{\mathbf{1 2}}{\mathbf{1 3}} \approx 0.923077 \\
& \text { OR } \\
& \frac{{ }_{7} C_{0} \cdot{ }_{8} C_{3}}{{ }_{15} C_{3}}+\frac{{ }_{7} C_{1} \cdot{ }_{8} C_{2}}{{ }_{15} C_{3}}
\end{aligned}+\frac{{ }_{7} C_{2} \cdot{ }_{8} C_{1}}{{ }_{15} C_{3}}=\frac{1 \cdot 56}{455}+\frac{7 \cdot 28}{455}+\frac{21 \cdot 8}{455} .
$$

4. A small grocery store had 10 cartons of milk, 2 of which were sour.
a) If David is going to buy the sixth carton of milk sold that day at random, compute the probability that he selects a carton of sour milk.

$$
\begin{aligned}
& \mathrm{P}\binom{\text { first } 5:}{5 \text { fresh, } 0 \text { sour }} \times \frac{2}{5}+\mathrm{P}\binom{\text { first } 5:}{4 \text { fresh, } 1 \text { sour }} \times \frac{1}{5}+\mathrm{P}\binom{\text { first } 5:}{3 \text { fresh, } 2 \text { sour }} \times \frac{0}{5} \\
&=\frac{\binom{8}{5} \cdot\binom{2}{0}}{\binom{10}{5}} \times \frac{2}{5}+\frac{\binom{8}{4} \cdot\binom{2}{1}}{\binom{10}{5}} \times \frac{1}{5}=\frac{56 \cdot 1}{252} \times \frac{2}{5}+\frac{70 \cdot 2}{252} \times \frac{1}{5}=\frac{\mathbf{1}}{5} .
\end{aligned}
$$

b) If six cartons of milk are sold that day at random, what is the probability that exactly one carton of sour milk is sold.

$$
\frac{\binom{8}{5} \cdot\binom{2}{1}}{\binom{10}{6}}=\frac{56 \cdot 2}{210}=\frac{8}{15}
$$

5. Suppose the number of boxes of Hammermill® paper used by Anytown College Statistics \& Probability Department each month is random and has the following probability distribution:

x	$f(x)$	$x \cdot f(x)$	$x^{2} \cdot f(x)$
0	0.1	0	0
1	0.1	0.1	0.1
2	0.3	0.6	1.2
3	0.3	0.9	2.7
4	0.2	0.8	3.2
		2.4	7.2

Suppose at the end of each month the department orders the same number of boxes as was used during the month. Suppose each box costs $\$ 25$. The department has to pay a $\$ 5$ delivery fee (the delivery fee does not depend on the number of boxes ordered). Then the monthly "paper" bill is $\mathrm{Y}=25 \cdot \mathrm{X}+5$. Find Anytown College Statistics \& Probability Department's average monthly "paper" bill and its standard deviation.

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\sum_{\text {all } x} x \cdot f(x)=2.4 . \\
& \operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}=\sum_{\text {all } x} x^{2} \cdot f(x)-[\mathrm{E}(\mathrm{X})]^{2}=7.2-(2.4)^{2}=\mathbf{1 . 4 4 .} \\
& \mathrm{SD}(\mathrm{X})=\sqrt{1.44}=\mathbf{1 . 2} . \\
& \mathrm{E}(\mathrm{Y})=25 \cdot \mathrm{E}(\mathrm{X})+5=25 \cdot 2.4+5=\$ 65 . \\
& \mathrm{SD}(\mathrm{Y})=|25| \cdot \mathrm{SD}(\mathrm{X})=25 \cdot 1.2=\mathbf{\$ 3 0} .
\end{aligned}
$$

6. Suppose we roll a pair of fair 6-sided dice. Let X denote the maximum (the largest) of the outcomes on the two dice. Construct the probability distribution of X and compute its expected value.

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

x	$f(x)$
1	$1 / 36$
2	$3 / 36$
3	$5 / 36$
4	$7 / 36$
5	$9 / 36$
6	$11 / 36$

$x \times f(x)$
$1 / 36$
$6 / 36$
$15 / 36$
$28 / 36$
$45 / 36$
$66 / 36$

$\mathrm{E}(\mathrm{X})=161 / 36 \approx 4.472222$.
7. Consider $f(x)=c(x+1)^{2}, x=0,1,2,3$.
a) Find c such that $f(x)$ satisfies the conditions of being a p.m.f. for a random variable X .

$$
\begin{array}{r}
1=\sum_{\text {all } x} f(x)=f(0)+f(1)+f(2)+f(3)=c+4 c+9 c+16 c=30 c . \\
\Rightarrow \quad c=\frac{\mathbf{1}}{\mathbf{3 0}} .
\end{array}
$$

b) Find the expected value of X .

$$
\mathrm{E}(\mathrm{X})=\sum_{\text {all } x} x \cdot f(x)=0 \times \frac{1}{30}+1 \times \frac{4}{30}+2 \times \frac{9}{30}+3 \times \frac{16}{30}=\frac{7}{3} \approx 2.33333
$$

c) Find the standard deviation of X .

$$
\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{\text {all } x} x^{2} \cdot f(x)=0 \times \frac{1}{30}+1 \times \frac{4}{30}+4 \times \frac{9}{30}+9 \times \frac{16}{30}=\frac{92}{15} \approx 6.13333 .
$$

$$
\operatorname{Var}(X)=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}=\frac{92}{15}-\frac{49}{9}=\frac{31}{45} \approx 0.68889
$$

$$
\operatorname{SD}(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{\frac{31}{45}} \approx \mathbf{0 . 8 3}
$$

8.

a) Let X be a discrete random variable with p.m.f.

$$
f(k)=\frac{c}{a^{k}}, \quad k=2,3,4,5,6, \ldots, \quad \text { where } c=a(a-1)
$$

Recall (Homework \#1 Problem 7): this a valid probability distribution.
Find $\mu_{X}=E(X)$.

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\sum_{\mathrm{all} x} x \cdot f(x)=\sum_{k=2}^{\infty} k \cdot \frac{a(a-1)}{a^{k}}=\sum_{k=2}^{\infty} k \cdot \frac{a-1}{a^{k-1}} . \\
& \begin{aligned}
& \mathrm{E}(\mathrm{X})=2 \cdot \frac{a-1}{a^{1}}+3 \cdot \frac{a-1}{a^{2}}+4 \cdot \frac{a-1}{a^{3}}+5 \cdot \frac{a-1}{a^{4}}+6 \cdot \frac{a-1}{a^{5}}+\ldots \\
& \begin{aligned}
\frac{1}{a} \cdot \mathrm{E}(\mathrm{X})= & 2 \cdot \frac{a-1}{a^{2}}+3 \cdot \frac{a-1}{a^{3}}+4 \cdot \frac{a-1}{a^{4}}+5 \cdot \frac{a-1}{a^{5}}+\ldots
\end{aligned} \\
& \begin{array}{r}
\Rightarrow \quad\left(1-\frac{1}{a}\right) \cdot \mathrm{E}(\mathrm{X})=2 \cdot \frac{a-1}{a^{1}}+\frac{a-1}{a^{2}}+\frac{a-1}{a^{3}}+\frac{a-1}{a^{4}}+\frac{a-1}{a^{5}}+\ldots \\
\\
\quad= \\
\quad=\frac{a-1}{a}+\frac{a(a-1)}{a^{2}}+\frac{a(a-1)}{a^{3}}+\frac{a(a-1)}{a^{4}}+\frac{a(a-1)}{a^{5}}+\frac{a(a-1)}{a^{6}}+\ldots . \\
a
\end{array} \\
& \frac{a-1}{a} \cdot \mathrm{E}(\mathrm{X})= \frac{2 a-1}{a} .
\end{aligned}
\end{aligned}
$$

Therefore, $\mathrm{E}(\mathrm{X})=\frac{2 a-1}{a-1}=1+\frac{a}{a-1}=2+\frac{1}{a-1}$.

OR
$\mathrm{E}(\mathrm{X})=\sum_{\text {all } x} x \cdot f(x)=\sum_{k=2}^{\infty} k \cdot \frac{a(a-1)}{a^{k}}=\sum_{k=1}^{\infty}(k+1) \cdot \frac{a(a-1)}{a^{k+1}}$

$$
=\sum_{k=1}^{\infty}(k+1) \cdot \frac{1}{a^{k-1}} \cdot \frac{a-1}{a}=\sum_{k=1}^{\infty}(k+1) \cdot\left(\frac{1}{a}\right)^{k-1} \cdot\left(1-\frac{1}{a}\right)=\mathrm{E}(\mathrm{Y}+1)
$$

where Y has a Geometric distribution with probability of "success" $p=1-\frac{1}{a}=\frac{a-1}{a}$.
$\Rightarrow \quad \mathrm{E}(\mathrm{X})=\mathrm{E}(\mathrm{Y})+1=\frac{a}{a-1}+1=\frac{2 a-1}{a-1}=2+\frac{1}{a-1}$.
b) Let X be a discrete random variable with p.m.f.

$$
f(k)=c \frac{2^{k}}{k!}, \quad k=2,3,4,5,6, \ldots
$$

where $c=\frac{1}{e^{2}-3}$.
Recall (Homework \#1 Problem 8): this a valid probability distribution.
Find $\mu_{X}=E(X)$.

$$
\begin{aligned}
\mathrm{E}(\mathrm{X}) & =\sum_{\operatorname{all} x} x \cdot f(x)=\sum_{k=2}^{\infty} k \cdot \frac{1}{e^{2}-3} \frac{2^{k}}{k!}=\frac{1}{e^{2}-3} \sum_{k=2}^{\infty} \frac{2^{k}}{(k-1)!} \\
& =\frac{1}{e^{2}-3} \sum_{n=1}^{\infty} \frac{2^{n+1}}{n!}=\frac{2}{e^{2}-3} \sum_{n=1}^{\infty} \frac{2^{n}}{n!}=\frac{2\left(e^{2}-1\right)}{e^{2}-3} \approx 2.91136 .
\end{aligned}
$$

9-10. An oil company believes that the probability of existence of an oil deposit in a certain drilling area is 0.30 . Suppose it would cost $\$ 100,000$ to drill a well. If an oil deposit does exist, the company's profit will be \$700,000 (the drilling costs not included). A seismic test that would cost $\$ 20,000$ is being considered to clarify the likelihood of the presence of oil. The proposed seismic test has the following reliability: when oil does exist in the testing area, the test will indicate so 90% of the time; when oil does not exist in the test area, 20% of the time the test will erroneously indicate that it does exist. There are four possible "states of nature":
$\theta_{1}=$ an oil deposit does exist and the test result is positive, $\theta_{2}=$ an oil deposit does exist, but (and) the test result is negative, $\theta_{3}=$ an oil deposit does not exist, but (and) the test result is positive, θ_{4} = an oil deposit does not exist and the test result is negative.

The company can take two possible actions:
$\mathrm{a}_{1}=$ drill a well without performing the test,
$\mathrm{a}_{2}=$ perform the test and drill a well only if the test shows presence of oil.
9. a) Find the probabilities of all four states of nature.

That is, find $\mathrm{P}\left(\theta_{1}\right), \mathrm{P}\left(\theta_{2}\right), \mathrm{P}\left(\theta_{3}\right)$, and $\mathrm{P}\left(\theta_{4}\right)$.

$$
\begin{aligned}
& \mathrm{P}(\text { Oil })=0.30, \quad \mathrm{P}(+\mid \text { Oil })=0.90, \quad \mathrm{P}(+\mid \text { No Oil })=0.20 . \\
& \mathrm{P}\left(\theta_{1}\right)=\mathrm{P}(\text { Oil } \cap+)=\mathrm{P}(\text { Oil }) \times \mathrm{P}(+\mid \text { Oil })=0.30 \times 0.90=\mathbf{0} .27 . \\
& \mathrm{P}\left(\theta_{2}\right)=\mathrm{P}(\text { Oil } \cap-)=\mathrm{P}(\text { Oil }) \times \mathrm{P}(-\mid \text { Oil })=0.30 \times 0.10=\mathbf{0 . 0 3 .} \\
& \mathrm{P}\left(\theta_{3}\right)=\mathrm{P}(\text { No Oil } \cap+)=\mathrm{P}(\text { No Oil }) \times \mathrm{P}(+\mid \text { No Oil })=0.70 \times 0.20=\mathbf{0 . 1 4} . \\
& \mathrm{P}\left(\theta_{4}\right)=\mathrm{P}(\text { No Oil } \cap-)=\mathrm{P}(\text { No Oil }) \times \mathrm{P}(-\mid \text { No Oil })=0.70 \times 0.80=\mathbf{0 . 5 6} .
\end{aligned}
$$

b) Suppose the test shows presence of oil. What is the probability that an oil deposit does exist?

$$
\mathrm{P}(\mathrm{Oil} \mid+)=\frac{\mathrm{P}(\mathrm{Oil} \cap+)}{\mathrm{P}(+)}=\frac{0.27}{0.27+0.14}=\frac{0.27}{0.41} \approx \mathbf{0 . 6 5 8 5 3 6 6} .
$$

10. c) Construct the payoff table (profit table) for this problem. That is, find the company's profit for each possible action and each possible state of nature.

	θ_{1} Oil	θ_{2} Oil	θ_{3} No Oil	θ_{4} No Oil
a 1				
drill w/o test	$-100,000$	$-100,000$	$-100,000$	$-100,000$
700,000	700,000			
	$\mathbf{6 0 0 , 0 0 0}$	$\mathbf{6 0 0 , 0 0 0}$	$-\mathbf{1 0 0 , 0 0 0}$	$-\mathbf{1 0 0 , 0 0 0}$
a $_{2}$	$-20,000$	$-20,000$	$-20,000$	$-20,000$
drill only if +	$-100,000$		$-100,000$	
$\mathbf{7 0 0 , 0 0 0}$				
$\mathbf{5 8 0 , 0 0 0}$	$\mathbf{- 2 0 , 0 0 0}$	$\mathbf{- 1 2 0 , 0 0 0}$	$\mathbf{- 2 0 , 0 0 0}$	

d) Find the expected payoff (expected profit, EP) for both actions and determine the optimal action.

$$
\begin{aligned}
\mathrm{EP}\left(\mathrm{a}_{1}\right) & =600,000 \times 0.27+600,000 \times 0.03+(-100,000) \times 0.14+(-100,000) \times 0.56 \\
& =\$ \mathbf{1 1 0 , 0 0 0}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{EP}\left(\mathrm{a}_{2}\right) & =580,000 \times 0.27+(-20,000) \times 0.03+(-120,000) \times 0.14+(-20,000) \times 0.56 \\
& =\text { \$128,000 }
\end{aligned}
$$

Optimal action = $\mathbf{a} 2$ (perform the test and drill a well only if the test shows presence of oil) is the optimal action, it has a higher expected payoff.

For fun:

Suppose the probability of existence of an oil deposit in a certain drilling area is unknown, p.
$\mathrm{P}\left(\theta_{1}\right)=\mathrm{P}($ Oil $\cap+)=\mathrm{P}($ Oil $) \times \mathrm{P}(+\mid$ Oil $)=p \times 0.90$.
$\mathrm{P}\left(\theta_{2}\right)=\mathrm{P}($ Oil $\cap-)=\mathrm{P}($ Oil $) \times \mathrm{P}(-\mid$ Oil $)=p \times 0.10$.
$\mathrm{P}\left(\theta_{3}\right)=\mathrm{P}($ No Oil $\cap+)=\mathrm{P}($ No Oil $) \times \mathrm{P}(+\mid$ No Oil $)=(1-p) \times 0.20$.
$\mathrm{P}\left(\theta_{4}\right)=\mathrm{P}($ No Oil $\cap-)=\mathrm{P}($ No Oil $) \times \mathrm{P}(-\mid$ No Oil $)=(1-p) \times 0.80$.

	$\mathrm{Oil}_{1}{ }^{\text {O }}$	Oil_{2}	θ_{3} No Oil	θ_{4} No Oil
a 1 drill w/o test	$\begin{array}{r} -100,000 \\ 700,000 \\ \mathbf{6 0 0 , 0 0 0} \end{array}$	$\begin{array}{r} -100,000 \\ 700,000 \\ \mathbf{6 0 0 , 0 0 0} \end{array}$	$\begin{array}{r} -100,000 \\ -\mathbf{1 0 0 , 0 0 0} \end{array}$	$\begin{array}{r} -100,000 \\ -\mathbf{1 0 0 , 0 0 0} \end{array}$
a_{2} drill only if +	$\begin{array}{r} -\quad 20,000 \\ -100,000 \\ 700,000 \\ \mathbf{5 8 0 , 0 0 0} \end{array}$	$\begin{array}{r} -20,000 \\ -\mathbf{2 0 , 0 0 0} \end{array}$	$\begin{aligned} & -20,000 \\ & -100,000 \\ & -\mathbf{1 2 0 , 0 0 0} \end{aligned}$	$\begin{array}{r} -20,000 \\ -\mathbf{2 0 , 0 0 0} \end{array}$
a_{3} do nothing	0	0	0	0

$$
\begin{aligned}
\operatorname{EP}\left(\mathrm{a}_{1}\right)=600,000 \times & p \times 0.90+600,000 \times p \times 0.10 \\
& +(-100,000) \times(1-p) \times 0.20+(-100,000) \times(1-p) \times 0.80 \\
= & 700,000 \times p-100,000
\end{aligned}
$$

$\operatorname{EP}\left(\mathrm{a}_{2}\right)=580,000 \times p \times 0.90+(-20,000) \times p \times 0.10$

$$
+(-120,000) \times(1-p) \times 0.20+(-20,000) \times(1-p) \times 0.80
$$

$$
=560,000 \times p-40,000
$$

$E P\left(\mathrm{a}_{3}\right)=0$.

$\operatorname{EP}\left(\mathrm{a}_{1}\right)=\operatorname{EP}\left(\mathrm{a}_{2}\right)$.
$700,000 p-100,000=560,000 p-40,000$.
$140,000 p=60,000 . \quad \Rightarrow \quad p=3 / 7$.
$E P\left(a_{1}\right)=E P\left(a_{3}\right)$.
$700,000 p-100,000=0$.
$\Rightarrow \quad p=1 / 7$.
$E P\left(a_{2}\right)=\operatorname{EP}\left(a_{3}\right)$.
560,000 $p-40,000=0$.
$\Rightarrow \quad p=1 / 14$.

If $p<1 / 14, \mathbf{a}_{3}$ is optimal.
If $1 / 14<p<3 / 7$, a 2 is optimal.
If $\boldsymbol{p}>\mathbf{3} / \mathbf{7}, \mathbf{a}_{1}$ is optimal.

