SOLUTIONS

The following are a number of practice problems that may be helpful for completing the homework, and will likely be very useful for studying for exams.

1-4. Do NOT use a computer. You may only use,,$+- \times, \div$, and $\sqrt{ }$ on a calculator. Show all work.

1. Evaluate the following integrals:
a) $\quad \int_{0}^{\infty} x^{2} e^{-3 x} d x ; \quad$ b) $\quad \int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x ; \quad$ c) $\quad \int_{1}^{\infty} \frac{x}{(1+x)^{4}} d x$.
a) $\quad \int_{0}^{\infty} x^{2} e^{-3 x} d x=\left.\left(-\frac{1}{3} \cdot x^{2} \cdot e^{-3 x}-\frac{2}{3^{2}} \cdot x \cdot e^{-3 x}-\frac{2}{3^{3}} \cdot e^{-3 x}\right)\right|_{0} ^{\infty}=\frac{2}{27}$.
b) $\left.\quad \int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x=\int_{0}^{\sqrt{\pi}} \frac{1}{2} \sin \left(x^{2}\right)(2 x d x)=\left(-\frac{\cos \left(x^{2}\right)}{2}\right) \right\rvert\, \begin{gathered}\sqrt{\pi} \\ 0\end{gathered}$.
c) $\quad \int_{1}^{\infty} \frac{x}{(1+x)^{4}} d x=\int_{2}^{\infty} \frac{(u-1)}{u^{4}} d u=\int_{2}^{\infty} \frac{1}{u^{3}} d u-\int_{2}^{\infty} \frac{1}{u^{4}} d u=\frac{1}{8}-\frac{1}{24}=\frac{\mathbf{1}}{\mathbf{1 2}}$.
2. Let $c>0$. Consider $f(x, y)=x+c y$ and $\mathrm{A}=\{(x, y): 0<y<x<1\}$.
a) Sketch A. That is, sketch

$$
\{(x, y): 0<y<x<1\}
$$

b) Set up the double integral(s) of $f(x, y)$ over A with the outside integral w.r.t. x and the inside integral w.r.t. y.

$$
\int_{0}^{1}\left(\int_{0}^{x}(x+c y) d y\right) d x
$$

c) Set up the double integral(s) of $f(x, y)$ over A with the outside integral w.r.t. y and the inside integral w.r.t. \boldsymbol{x}.

$$
\int_{0}^{1}\left(\int_{y}^{1}(x+c y) d x\right) d y
$$

d) Find the value of c such that $\iint_{\mathrm{A}} f(x, y) d x d y=1$.

$$
\begin{aligned}
& \int_{0}^{1}\left(\int_{0}^{x}(x+c y) d y\right) d x=\int_{0}^{1}\left(1+\frac{c}{2}\right) x^{2} d x=\frac{1}{3}\left(1+\frac{c}{2}\right)=\frac{1}{3}+\frac{c}{6}=1 . \\
& \Rightarrow \quad c=4
\end{aligned}
$$

3. Consider $f(x, y)=x y^{3}$ and $\mathrm{A}=\{(x, y): 0<y<1, y<x<2\}$.
a) Sketch A. That is, sketch $\{(x, y): 0<y<1, y<x<2\}$.

b) Set up the double integral(s) of $f(x, y)$ over A with the outside integral w.r.t. x and the inside integral w.r.t. y.

$$
\int_{0}^{1}\left(\int_{0}^{x} x y^{3} d y\right) d x+\int_{1}^{2}\left(\int_{0}^{1} x y^{3} d y\right) d x
$$

c) Set up the double integral(s) of $f(x, y)$ over A with the outside integral w.r.t. y and the inside integral w.r.t. x.

$$
\int_{0}^{1}\left(\int_{y}^{2} x y^{3} d x\right) d y
$$

d) Use either (b) or (c) to evaluate $\iint_{\mathrm{A}} f(x, y) d x d y$.

$$
\begin{gathered}
\int_{0}^{1}\left(\int_{y}^{2} x y^{3} d x\right) d y=\int_{0}^{1}\left(\frac{1}{2} x^{2} y^{3}\right) \left\lvert\, \begin{array}{l}
x=2 \\
x=y
\end{array} d y=\int_{0}^{1}\left(2 y^{3}-\frac{1}{2} y^{5}\right) d y\right. \\
=\left(\frac{1}{2} y^{4}-\frac{1}{12} y^{6}\right) \left\lvert\, \begin{array}{l}
y=1 \\
y=0
\end{array}=\frac{1}{2}-\frac{1}{12}=\frac{5}{\mathbf{1 2}}\right.
\end{gathered}
$$

OR

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{0}^{x} x y^{3} d y\right. &) d x+\int_{1}^{2}\left(\int_{0}^{1} x y^{3} d y\right) d x=\int_{0}^{1} \frac{x^{5}}{4} d x+\int_{1}^{2} \frac{x}{4} d x \\
& =\frac{1}{24}+\left(\frac{1}{2}-\frac{1}{8}\right)=\frac{5}{12}
\end{aligned}
$$

4. Evaluate the following sums (do NOT use a calculator):
a) $\quad \sum_{k=3}^{\infty} \frac{2}{5^{k}}$;
b) $\quad \sum_{k=1}^{\infty} 0.6^{2 k+1}$;
c) $\quad \sum_{k=5}^{\infty} \frac{2^{k}}{k!}$.
a) $\sum_{k=3}^{\infty} \frac{2}{5^{k}}=\frac{2}{5^{3}}+\frac{2}{5^{4}}+\frac{2}{5^{5}}+\frac{2}{5^{6}}+\ldots$

Geometric series. \quad Base $=\frac{1}{5}$.
$\sum_{k=3}^{\infty} \frac{2}{5^{k}}=\frac{\text { first term }}{1-\text { base }}=\frac{\frac{2}{5^{3}}}{1-\frac{1}{5}}=\frac{\frac{2}{125}}{\frac{4}{5}}=\frac{\mathbf{1}}{\mathbf{5 0}}=\mathbf{0 . 0 2}$.
b) $\quad \sum_{k=1}^{\infty} 0.6^{2 k+1}=0.6^{3}+0.6^{5}+0.6^{7}+0.6^{9}+\ldots$

Geometric series. \quad Base $=0.6^{2}=0.36$.

$$
\sum_{k=1}^{\infty} 0.6^{2 k+1}=\frac{\text { first term }}{1-\text { base }}=\frac{0.6^{3}}{1-0.36}=\frac{0.216}{0.64}=\frac{\mathbf{2 7}}{\mathbf{8 0}}=\mathbf{0 . 3 3 7 5}
$$

c) $\quad \sum_{k=5}^{\infty} \frac{2^{k}}{k!}=\sum_{k=0}^{\infty} \frac{2^{k}}{k!}-\frac{2^{0}}{0!}-\frac{2^{1}}{1!}-\frac{2^{2}}{2!}-\frac{2^{3}}{3!}-\frac{2^{4}}{4!}=e^{2}-1-2-2-\frac{4}{3}-\frac{2}{3}=\boldsymbol{e}^{2}-7$.
5. Suppose $P(A)=0.70, \quad P(B)=0.50, \quad P\left(A \cup B^{\prime}\right)=0.80$.
a) Find $P(A \cap B)$.
b) Find $P(A \cup B)$.
c) Find $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$.

$$
\begin{aligned}
& P(A)=(1)+(2)=0.70 \\
& P(B)=(2)+(3)=0.50 \\
& P\left(A \cup B^{\prime}\right)=(1)+(2)+(4)=0.80 \\
& \Rightarrow \quad \text { (4) }=0.10
\end{aligned}
$$

$$
P\left(B^{\prime}\right)=(1)+(4)=1-P(B)=0.50, \quad \Rightarrow \quad(1)=0.40
$$

$$
\Rightarrow \quad \text { (2) }=0.30 . \quad \Rightarrow \quad \text { (3) }=0.20
$$

a) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathbf{0 . 3 0}$.
b) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathbf{0 . 9 0}$.
c) $\quad \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{0.30}{0.50}=\mathbf{0 . 6 0}$.
6. Suppose
$P(A)=0.40$,
$P(B)=0.34$,
$P(C)=0.55$,
$P(A \cap B)=0.19$,
$\mathrm{P}(\mathrm{A} \cap \mathrm{C})=0.25$,
$P(B \cap C)=0.17$,
$\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0.07$.

a) Find $P(A \cup B \cup C)$.

$$
P(A \cup B \cup C)=\mathbf{0 . 7 5}
$$

b) Find $P((A \cap B) \cup C)$.

$$
\mathrm{P}((\mathrm{~A} \cap \mathrm{~B}) \cup \mathrm{C})=\mathbf{0 . 6 7} .
$$

c) Find $\mathrm{P}(\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C}))$.

$$
P(A \cap(B \cup C))=0.37
$$

7. Let $a>1$. Suppose $\mathrm{S}=\{2,3,4,5,6, \ldots\}$ and $\mathrm{P}(k)=\frac{c}{a^{k}}, k=2,3,4,5,6, \ldots$.
a) Find the value of C that makes this is a valid probability distribution.

Must have $\sum_{\text {all } X} \mathrm{P}(x)=1$.

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{c}{a^{k}}=\frac{c}{a^{2}}+\frac{c}{a^{3}}+\frac{c}{a^{4}}+\frac{c}{a^{5}}+\ldots=\frac{\text { first term }}{1-\text { base }}=\frac{\frac{c}{a^{2}}}{1-\frac{1}{a}}=\frac{c}{a(a-1)}=1 . \\
& \Rightarrow \quad c=a(a-1)
\end{aligned}
$$

b) Find P (outcome is odd $)$.
$\mathrm{P}($ outcome is odd $)=\mathrm{P}(3)+\mathrm{P}(5)+\mathrm{P}(7)+\mathrm{P}(9)+\ldots$

$$
\begin{aligned}
& =\frac{a(a-1)}{a^{3}}+\frac{a(a-1)}{a^{5}}+\frac{a(a-1)}{a^{7}}+\frac{a(a-1)}{a^{9}}+\ldots \\
& =\frac{\text { first term }}{1-\text { base }}=\frac{\frac{a-1}{a^{2}}}{1-\frac{1}{a^{2}}}=\frac{a-1}{a^{2}-1}=\frac{1}{a+1}
\end{aligned}
$$

OR
$P($ outcome is odd $)=P(3)+P(5)+P(7)+P(9)+\ldots$

$$
=\frac{a(a-1)}{a^{3}}+\frac{a(a-1)}{a^{5}}+\frac{a(a-1)}{a^{7}}+\frac{a(a-1)}{a^{9}}+\ldots
$$

$P($ outcome is even $)=P(2)+P(4)+P(6)+P(8)+\ldots$

$$
\begin{aligned}
& =\frac{a(a-1)}{a^{2}}+\frac{a(a-1)}{a^{4}}+\frac{a(a-1)}{a^{6}}+\frac{a(a-1)}{a^{8}}+\ldots \\
& =a \mathrm{P}(\text { outcome is odd }) .
\end{aligned}
$$

$\mathrm{P}($ outcome is odd $)+\mathrm{P}($ outcome is even $)=1$.
$\Rightarrow \quad \mathrm{P}($ outcome is odd $)+a \mathrm{P}($ outcome is odd $)=1$.
$\Rightarrow \quad \mathrm{P}($ outcome is odd $)=\frac{1}{a+1}$.
c) Find P (outcome is less than or equal to 5).
$P($ outcome is less than or equal to 5$)=P(2)+P(3)+P(4)+P(5)$

$$
\begin{aligned}
& =\frac{a(a-1)}{a^{2}}+\frac{a(a-1)}{a^{3}}+\frac{a(a-1)}{a^{4}}+\frac{a(a-1)}{a^{5}} \\
& =\frac{(a-1)}{a^{4}}\left(a^{3}+a^{2}+a+1\right)=\frac{a^{4}-1}{a^{4}}=1-\frac{1}{a^{4}} .
\end{aligned}
$$

OR
$P($ outcome is less than or equal to 5$)=1-[P(6)+P(7)+P(8)+P(9)+\ldots]$

$$
\begin{aligned}
& =1-\left[\frac{a(a-1)}{a^{6}}+\frac{a(a-1)}{a^{7}}+\frac{a(a-1)}{a^{8}}+\frac{a(a-1)}{a^{9}}+\ldots\right] \\
& =1-\frac{\text { first term }}{1-\text { base }}=1-\frac{\frac{a-1}{a^{5}}}{1-\frac{1}{a}}=1-\frac{1}{a^{4}} .
\end{aligned}
$$

8. Suppose $S=\{2,3,4,5,6, \ldots\}$ and $P(k)=c \frac{2^{k}}{k!}, \quad k=2,3,4,5,6, \ldots$.
a) Find the value of C that makes this is a valid probability distribution.

$$
\begin{aligned}
& \text { Must have } \sum_{\text {all } x} \mathrm{P}(x)=1 . \quad \Rightarrow \sum_{k=2}^{\infty} c \frac{2^{k}}{k!}=c \sum_{k=2}^{\infty} \frac{2^{k}}{k!}=1 . \\
& \sum_{k=2}^{\infty} \frac{2^{k}}{k!}=\sum_{k=0}^{\infty} \frac{2^{k}}{k!}-1-2=e^{2}-3 . \\
& C=\frac{1}{e^{2}-3} \approx 0.22784 .
\end{aligned}
$$

b) Find P (outcome is greater than or equal to 5).

$$
\begin{aligned}
1-\mathrm{P}(2)-\mathrm{P}(3)-\mathrm{P}(4) & =1-\frac{1}{e^{2}-3}\left[\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\frac{2^{4}}{4!}\right] \\
& =1-\frac{1}{e^{2}-3}\left[2+\frac{4}{3}+\frac{2}{3}\right]=1-\frac{4}{e^{2}-3} \approx 0.08864
\end{aligned}
$$

OR

$$
\begin{aligned}
& \mathrm{P}(5)+\mathrm{P}(6)+\mathrm{P}(7)+\mathrm{P}(8)+\ldots=\sum_{k=5}^{\infty} c \frac{2^{k}}{k!}=c \sum_{k=5}^{\infty} \frac{2^{k}}{k!} \\
& =c\left[\sum_{k=0}^{\infty} \frac{2^{k}}{k!}-\frac{2^{0}}{0!}-\frac{2^{1}}{1!}-\frac{2^{2}}{2!}-\frac{2^{3}}{3!}-\frac{2^{4}}{4!}\right] \\
& =c\left[e^{2}-1-2-2-\frac{4}{3}-\frac{2}{3}\right]==c\left\lfloor e^{2}-7\right]=\frac{e^{2}-7}{e^{2}-3} \approx 0.08864 .
\end{aligned}
$$

9. A family that owns two automobiles is selected at random. Suppose that the probability that the older car is American is 0.80 , the probability that the newer car is American is 0.70 , and the probability that both the older and the newer cars are American is 0.60 .

	New American	New Foreign	
Old American	$\mathbf{0 . 6 0}$	0.20	$\mathbf{0 . 8 0}$
Old Foreign	0.10	0.10	0.20
	$\mathbf{0 . 7 0}$	0.30	1.00

a) Find the probability that at least one car is American (i.e. that either the older car or the newer car, or both cars are American).
$\mathrm{P}(\mathrm{OA} \cup \mathrm{NA})=\mathrm{P}(\mathrm{OA})+\mathrm{P}(\mathrm{NA})-\mathrm{P}(\mathrm{OA} \cap \mathrm{NA})=0.80+0.70-0.60=\mathbf{0 . 9 0}$.
b) What is the probability that the newer car is American, given that the older car is American?
$\mathrm{P}(\mathrm{NA} \mid \mathrm{OA})=\frac{\mathrm{P}(\mathrm{OA} \cap \mathrm{NA})}{\mathrm{P}(\mathrm{OA})}=\frac{0.60}{0.80}=\mathbf{0 . 7 5}$.
c) What is the probability that the newer car is American, given that the older car is not American?
$\mathrm{P}(\mathrm{NA} \mid \mathrm{OF})=\frac{\mathrm{P}(\mathrm{OF} \cap \mathrm{NA})}{\mathrm{P}(\mathrm{OF})}=\frac{0.10}{0.20}=\mathbf{0 . 5 0}$.
10. At Anytownville College, 25% of all students are enrolled in an introductory level statistics class, and 20% of all students are seniors. It is also known that 15% of the seniors are enrolled in an introductory level statistics class.
$P($ STAT $)=0.25, \quad P($ SR $)=0.20, \quad P($ STAT \mid SR $)=0.15$.
a) Initech is offering an internship to a Anytownville College student who is either a senior or is enrolled in an introductory level statistics class, or both. What proportion of Anytownville College students are eligible for this internship?

Need $\mathrm{P}(\mathrm{SR} \cup \mathrm{STAT})=\mathrm{P}(\mathrm{SR})+\mathrm{P}(\mathrm{STAT})-\mathrm{P}(\mathrm{SR} \cap \mathrm{STAT})$.
$\mathrm{P}(\mathrm{SR} \cap \mathrm{STAT})=\mathrm{P}(\mathrm{SR}) \times \mathrm{P}(\mathrm{STAT} \mid \mathrm{SR})=0.20 \times 0.15=0.03$.
(3% of all students are seniors and are enrolled in an introductory level statistics class)
$\mathrm{P}(\mathrm{SR} \cup \mathrm{STAT})=\mathrm{P}(\mathrm{SR})+\mathrm{P}(\mathrm{STAT})-\mathrm{P}(\mathrm{SR} \cap \mathrm{STAT})=0.20+0.25-0.03=\mathbf{0 . 4 2}$.

	STAT	STAT $^{\prime}$	
SR	$\mathbf{0 . 0 3}$	0.17	$\mathbf{0 . 2 0}$
SR' $^{\prime}$	0.22	0.58	0.80
	$\mathbf{0 . 2 5}$	0.75	1.00

b) What proportion of students enrolled in an introductory level statistics class at Anytownville College are seniors?
$\mathrm{P}(\mathrm{SR} \mid \mathrm{STAT})=\frac{\mathrm{P}(\mathrm{SR} \cap \mathrm{STAT})}{\mathrm{P}(\mathrm{STAT})}=\frac{0.03}{0.25}=\mathbf{0 . 1 2}$.
c) Given that a student selected at random is not a senior, what is the probability that he/she is enrolled in an introductory level statistics class?

$$
\mathrm{P}\left(\mathrm{STAT} \mid \mathrm{SR}^{\prime}\right)=\frac{\mathrm{P}\left(\mathrm{SR}^{\prime} \cap \mathrm{STAT}\right)}{\mathrm{P}\left(\mathrm{SR}^{\prime}\right)}=\frac{0.22}{0.80}=\mathbf{0 . 2 7 5}
$$

