STAT 400 Homework 10

Spring 2018 | Dalpiaz | UIUC
Due: Friday, April 13, 2:00 PM

Exercise 1

Before it closed, Ron Swanson was a frequent patron of Charles Mulligan's Steakhouse in Indianapolis, Indiana. Ron enjoyed the experience so much, during each visit he took a picture with his steak.

Ron also weighed each steak he consumed. He has a record of eating six " 22 ounce" Charles Mulligan's porterhouse steaks. Ron found that these six steaks weighed
$22.4 \mathrm{oz}, 20.8 \mathrm{oz}, 21.6 \mathrm{oz}, 20.2 \mathrm{oz}, 21.4 \mathrm{oz}, 22.0 \mathrm{oz}$
Suppose that " 22 ounce" Charles Mulligan's porterhouse steaks follow a $N\left(\mu, \sigma^{2}\right)$ distribution and that Ron's six steaks were a random sample.
(a) Compute the sample standard deviation, s, of these six steaks. Do not use a computer. You may only use,,$+- \times, \div$, and $\sqrt{ }$ on a calculator. Show all work.

Solution:

x_{i}	$x_{i}-\bar{x}$	$\left(x_{i}-\bar{x}\right)^{2}$
22.4	1.0	1.00
20.8	-0.6	0.36
21.6	0.2	0.04
20.2	-1.2	1.44
21.4	0	0.00
22.0	0.6	0.36

So, we have

$$
\sum_{i=n}^{n} x_{i}=128.4
$$

Thus

$$
\bar{x}=\frac{1}{n} \sum_{i=n}^{n} x_{i}=\frac{1}{6}(128.4)=21.4
$$

Note that,

$$
\sum_{i=n}^{n}\left(x_{i}-\bar{x}\right)=0
$$

More importantly,

$$
\sum_{i=n}^{n}\left(x_{i}-\bar{x}\right)^{2}=3.2
$$

Thus,

$$
s^{2}=\frac{1}{n-1} \sum_{i=n}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{5}(3.2)=0.64
$$

Then finally,

$$
s=\sqrt{s^{2}}=\sqrt{0.64}=0.8
$$

$\mathrm{x}=\mathrm{c}(22.4,20.8,21.6,20.2,21.4,22.0)$
mean (x)
\#\# [1] 21.4
$\operatorname{var}(\mathrm{x})$
\#\# [1] 0.64
sd (x)
\#\# [1] 0.8
(b) Construct a 95% two-sided confidence interval for the true mean weight of a " 22 ounce" Charles Mulligan's porterhouse steak, μ.

Solution:

Here σ is unknown and n is small, so we use t.

$$
\bar{x} \pm t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}
$$

We have,

- $n=6$,
- $\bar{x}=21.4$,
- $s=0.8$,
- $1-\alpha=0.95$, so $\alpha / 2=0.025$,
- $t_{\alpha / 2}(n-1)=t_{0.025}(5)=2.571$.

$$
21.4 \pm 2.571 \frac{0.8}{\sqrt{6}}
$$

21.4 ± 0.8397

$(20.5603,22.2397)$

```
n = length(x)
est = mean(x)
s = sd(x)
alpha = 0.05
crit = qt(alpha / 2, df = n - 1, lower.tail = FALSE)
se = s / sqrt(n)
margin = crit * se
lower = est - margin
upper = est + margin
c(lower, upper) # above answer contains some rounding, hence the difference
## [1] 20.56045 22.23955
t.test(x, level = 0.95)$conf.int
## [1] 20.56045 22.23955
## attr(,"conf.level")
## [1] 0.95
```

(c) Construct a 95% confidence lower bound for the true mean weight of a " 22 ounce" Charles Mulligan's porterhouse steak, μ.

Solution:

$$
\left[\bar{x}-t_{\alpha}(n-1) \frac{s}{\sqrt{n}}, \infty\right)
$$

We have,

- $n=6$,
- $\bar{x}=21.4$,
- $s=0.8$,
- $1-\alpha=0.95$, so $\alpha=0.05$,
- $t_{\alpha}(n-1)=t_{0.05}(5)=2.0150$.

$$
\begin{gathered}
21.4-2.0150 \frac{0.8}{\sqrt{6}}=20.7419 \\
{[20.7419, \infty)}
\end{gathered}
$$

```
n = length(x)
est = mean(x)
s = sd(x)
alpha = 0.05
crit = qt(alpha, df = n - 1, lower.tail = FALSE)
se = s / sqrt(n)
margin = crit * se
(lower = est - margin)
## [1] 20.74189
```

(d) Construct a 90% two-sided confidence interval for the true standard deviation of the weight of a " 22 ounce" Charles Mulligan's porterhouse steak, σ.

Solution:

$$
\left(\sqrt{\frac{(n-1) \cdot s^{2}}{\chi_{\alpha / 2}^{2}(n-1)}}, \sqrt{\frac{(n-1) \cdot s^{2}}{\chi_{1-\alpha / 2}^{2}(n-1)}}\right)
$$

- $n=6$,
- $s=0.8$,
- $1-\alpha=0.90$, so $\alpha / 2=0.05$, and $1-\alpha / 2=0.95$
- $\chi_{\alpha / 2}^{2}(n-1)=\chi_{0.05}^{2}(5)=11.07$.
- $\chi_{1-\alpha / 2}^{2}(n-1)=\chi_{0.95}^{2}(5)=1.145$.

$$
\begin{gathered}
\left(\sqrt{\frac{(6-1) \cdot 0.8^{2}}{11.07}}, \sqrt{\frac{(6-1) \cdot 0.8^{2}}{1.145}}\right) \\
(0.5377,1.6718)
\end{gathered}
$$

$\mathrm{n}=6$
$\mathrm{s}=0.8$
alpha $=0.10$
crit_lower = qchisq(alpha / 2, df = n - 1, lower.tail = FALSE)
crit_upper = qchisq(1 - alpha / 2, df = n - 1, lower.tail = FALSE)
lower $=\operatorname{sqrt}((\mathrm{n}-1) * \mathrm{~s}$ - $2 /$ crit_lower $)$
upper $=\operatorname{sqrt}((n-1) * s$ - $2 /$ crit_upper $)$
c(lower, upper)
\#\# [1] 0.53763981 .6714060
(e) Construct a 90% confidence upper bound for the true standard deviation of the weight of a " 22 ounce" Charles Mulligan's porterhouse steak, σ.

Solution:

$$
\left(0, \sqrt{\frac{(n-1) \cdot s^{2}}{\chi_{1-\alpha}^{2}(n-1)}}\right)
$$

- $n=6$,
- $s=0.04$,
- $1-\alpha=0.90$
- $\chi_{1-\alpha}^{2}(n-1)=\chi_{0.90}^{2}(5)=1.610$.

$$
\begin{gathered}
\left(0, \sqrt{\frac{(6-1) \cdot 0.8^{2}}{1.610}}\right) \\
(0,1.4098)
\end{gathered}
$$

```
n = 6
s = 0.8
alpha = 0.10
crit_upper = qchisq(1 - alpha, df = n - 1, lower.tail = FALSE)
upper = sqrt((n - 1) * s - 2 / crit_upper)
c(0, upper)
## [1] 0.00000 1.40968
```


Exercise 2

Last year, ballots in Champaign-Urbana contained the following question to assess public opinion on an issue:
"Should the State of Illinois legalize and regulate the sale and use of marijuana in a similar fashion as the State of Colorado?"

Suppose that we would like to understand Champaign-Urbana's 2017 opinion on marijuana legalization. To satisfy our curiosity, we obtain a random sample of 120 Champaign-Urbanians and find that 87 support marijuana legalization.
(a) Construct a 99% confidence interval for p, the true proportion of Champaign-Urbanians that support marijuana legalization.

Solution:

- $x=87$
- $n=120$
- $\alpha=0.01, \alpha / 2=0.005$
- $z_{\alpha / 2}=z_{0.005}=2.576$

$$
\begin{gathered}
\hat{p}=\frac{x}{n}=\frac{87}{120}=0.725 \\
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p} \cdot(1-\hat{p})}{n}} \\
0.725 \pm 2.576 \sqrt{\frac{0.725 \cdot 0.275}{120}} \\
\mathbf{0 . 7 2 5} \pm \mathbf{0 . 1 0 5 0} \\
(\mathbf{0 . 6 2 , 0 . 8 3)}
\end{gathered}
$$

(b) Suppose that a pollster wants to estimate the true proportion of Champaign-Urbanians that support marijuana legalization to within 0.04 , with 95% confidence. How many Champaign-Urbanians should this pollster poll? Assume the pollster has no prior knowledge about the proportion.

Solution:

- $\hat{p}=0.50$, since we have no prior knowledge. (Worst case scenario.)
- $\epsilon=0.04$
- $\alpha=0.05, \alpha / 2=0.025$
- $z_{\alpha / 2}=z_{0.025}=1.960$

$$
n=\left\lceil\left(\frac{z_{\alpha / 2}}{\epsilon}\right)^{2} \cdot \hat{p}(1-\hat{p})\right\rceil=\left\lceil\left(\frac{1.960}{0.04}\right)^{2} \cdot 0.50 \cdot 0.50\right\rceil=601
$$

(c) Now assume the pollster believes that support for legalization is somewhere between 65% and 85% and they would like to estimate the true proportion of Champaign-Urbanians that support marijuana legalization to within 0.04 , with 90% confidence. How many Champaign-Urbanians should this pollster poll?

Solution:

- $\tilde{p}=0.65$, since it is closest to 0.50 . (Worst case scenario.)
- $\epsilon=0.04$
- $\alpha=0.10, \alpha / 2=0.05$
- $z_{\alpha / 2}=z_{0.05}=1.645$

$$
n=\left\lceil\left(\frac{z_{\alpha / 2}}{\epsilon}\right)^{2} \cdot \tilde{p}(1-\tilde{p})\right\rceil=\left\lceil\left(\frac{1.645}{0.04}\right)^{2} \cdot 0.65 \cdot 0.35\right\rceil=\square 38
$$

Exercise 3

Suppose students in a Statistics class are interested in the average score of an exam, but the instructor has only graded (a random sample of) 13 of the (many) exams. The instructor states that a 90% confidence interval for the true mean is given by $(79.14,82.86)$ and that you can assume the grades follow a normal distribution.
Using only this information, calculate \bar{x}, s, and finally, a 95% confidence interval for μ, the true mean of the exam.

Solution:

First, since the interval is symmetric about the sample mean

$$
\bar{x}=\frac{79.14+82.86}{2}=81
$$

We can also obtain the margin of error, which is half the length of the interval,

$$
\epsilon=\frac{82.86-79.14}{2}=1.86
$$

The critical value of an 90% confidence interval with 13 observations is

$$
t_{0.05}(12)=1.782
$$

Then solving

$$
1.86=1.782 \cdot \frac{s}{\sqrt{13}}
$$

we find that

$$
s=3.7634
$$

The critical value of an 95% confidence interval with 13 observations is

$$
\begin{aligned}
& t_{0.025}(12)=2.1788 \\
& \bar{x} \pm t_{\alpha / 2}(n-1) \frac{s}{\sqrt{n}}
\end{aligned}
$$

Then a 95% confidence interval is given by

$$
81 \pm 2.1788 \frac{3.7634}{\sqrt{13}}
$$

$$
81 \pm 2.2742
$$

(78.7258, 83.2742)

Exercise 4

Suppose that 10 students visit the Stars Hollow Apple Orchard and each pick (a random sample of) 15 Fuji apples, weigh them, then create a 90% confidence interval for the true mean weight of a Fuji apple at the Stars Hollow Apple Orchard. What is the probably that at most 2 of these intervals do not contain the true mean weight of a Fuji apple at the Stars Hollow Apple Orchard?
Since we haven't actually seen any of the intervals, and assuming they are created with the correct procedure, each has a 90% of containing the true mean, thus they have a 10% chance to not contain the true mean.

Define X to be the number of intervals that do not contain the true mean. Then,

$$
X \sim \operatorname{binom}(n=10, p=0.10)
$$

So finally we want

$$
\begin{aligned}
P(X \leq 2) & =P(X=0)+P(X=1)+P(X=2) \\
& =0.3486784+0.3874205+0.1937102 \\
& =0.9298092
\end{aligned}
$$

```
dbinom(c(0, 1, 2), size = 10, prob = 0.10)
```

\#\# [1] 0.34867840 .38742050 .1937102
sum(dbinom(c(0, 1, 2), size = 10, prob = 0.10))
\#\# [1] 0.9298092
pbinom(2, size $=10$, prob $=0.10$)
\#\# [1] 0.9298092

