STAT 400 Homework 09

Spring 2018 | Dalpiaz | UIUC
Due: Friday, April 6, 2:00 PM

Exercise 1

Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample of size n from a distribution with probability density function

$$
f(x, \theta)=\frac{1}{\theta} e^{-x / \theta}, \quad x>0, \theta>0
$$

Note that, the moments of this distribution are given by

$$
E\left[X^{k}\right]=\int_{0}^{\infty} \frac{x^{k}}{\theta} e^{-x / \theta}=k!\cdot \theta^{k}
$$

This will be a useful fact for Exercises 2 and 3.
(a) Obtain the maximum likelihood estimator of $\theta, \hat{\theta}$. (This should be a function of the unobserved x_{i} and the sample size n.) Calculate the estimate when

$$
x_{1}=0.50, x_{2}=1.50, x_{3}=4.00, x_{4}=3.00
$$

(This should be a single number, for this dataset.)

Solution:

We first obtain the likelihood by multiplying the probability density function for each X_{i}. We then simplify this expression.

$$
L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{1}{\theta} e^{-x_{i} / \theta}=\theta^{-n} \exp \left(\frac{-\sum_{i=i}^{n} x_{i}}{\theta}\right)
$$

Instead of directly maximizing the likelihood, we instead maximize the log-likelihood.

$$
\log L(\theta)=-n \log \theta-\frac{\sum_{i=i}^{n} x_{i}}{\theta}
$$

To maximize this function, we take a derivative with respect to θ.

$$
\frac{d}{d \theta} \log L(\theta)=\frac{-n}{\theta}+\frac{\sum_{i=i}^{n} x_{i}}{\theta^{2}}
$$

We set this derivative equal to zero, then solve for θ.

$$
\frac{-n}{\theta}+\frac{\sum_{i=i}^{n} x_{i}}{\theta^{2}}=0
$$

Solving gives our estimator, which we denote with a hat.

$$
\hat{\theta}=\frac{\sum_{i=i}^{n} x_{i}}{n}=\bar{x}
$$

Using the given data, we obtain an estimate.

$$
\hat{\theta}=\frac{0.50+1.50+4.00+3}{4}=2.25
$$

(b) Calculate the bias of the maximum likelihood estimator of $\theta, \hat{\theta}$. (This will be a number.)

Solution:

Note that we have an exponential distribution.

$$
\begin{gathered}
E\left[X_{i}\right]=\theta \\
\operatorname{Var}\left[X_{i}\right]=\theta^{2}
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{Bias}(\hat{\theta}) & =E[\hat{\theta}]-\theta \\
& =E\left[\frac{\sum_{i=i}^{n} X_{i}}{n}\right]-\theta \\
& =\frac{1}{n} \sum_{i=i}^{n} E\left[X_{i}\right]-\theta \\
& =\frac{1}{n} n \theta-\theta \\
& =\theta-\theta=0
\end{aligned}
$$

(c) Find the mean squared error of the maximum likelihood estimator of $\theta, \hat{\theta}$. (This will be an expression based on the parameter θ and the sample size n. Be aware of your answer to the previous part, as well as the distribution given.)

Solution:

$$
\begin{aligned}
\operatorname{MSE}(\hat{\theta}) & =[\operatorname{Bias}(\hat{\theta})]^{2}+\operatorname{Var}(\hat{\theta}) \\
& =0+\operatorname{Var}\left(\frac{\sum_{i=i}^{n} X_{i}}{n}\right) \\
& =\frac{1}{n^{2}} \sum_{i=i}^{n} \operatorname{Var}\left(X_{i}\right) \\
& =\frac{1}{n^{2}} n \theta^{2}=\frac{\theta^{2}}{n}
\end{aligned}
$$

(d) Provide an estimate for $P[X>4]$ when

$$
x_{1}=0.50, x_{2}=1.50, x_{3}=4.00, x_{4}=3.00
$$

Solution:

$$
\begin{gathered}
P[X>4]=e^{-4 / \theta} \\
\hat{P}[X>4]=e^{-4 / \hat{\theta}}=e^{-4 / 2.25}=0.1690
\end{gathered}
$$

Exercise 2

Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample of size n from a distribution with probability density function

$$
f(x, \alpha)=\alpha^{-2} x e^{-x / \alpha}, \quad x>0, \alpha>0
$$

(a) Obtain the maximum likelihood estimator of $\alpha, \hat{\alpha}$. Calculate the estimate when

$$
x_{1}=0.25, x_{2}=0.75, x_{3}=1.50, x_{4}=2.5, x_{5}=2.0
$$

Solution:

We first obtain the likelihood by multiplying the probability density function for each X_{i}. We then simplify this expression.

$$
L(\alpha)=\prod_{i=1}^{n} f\left(x_{i} ; \alpha\right)=\prod_{i=1}^{n} \alpha^{-2} x_{i} e^{-x_{i} / \alpha}=\alpha^{-2 n}\left(\prod_{i=1}^{n} x_{i}\right) \exp \left(\frac{-\sum_{i=i}^{n} x_{i}}{\alpha}\right)
$$

Instead of directly maximizing the likelihood, we instead maximize the log-likelihood.

$$
\log L(\alpha)=-2 n \log \alpha+\sum_{i=i}^{n} \log x_{i}-\frac{\sum_{i=i}^{n} x_{i}}{\alpha}
$$

To maximize this function, we take a derivative with respect to α.

$$
\frac{d}{d \alpha} \log L(\alpha)=\frac{-2 n}{\alpha}+\frac{\sum_{i=i}^{n} x_{i}}{\alpha^{2}}
$$

We set this derivative equal to zero, then solve for α.

$$
\frac{-2 n}{\alpha}+\frac{\sum_{i=i}^{n} x_{i}}{\alpha^{2}}=0
$$

Solving gives our estimator, which we denote with a hat.

$$
\hat{\alpha}=\frac{\sum_{i=i}^{n} x_{i}}{2 n}=\frac{\bar{x}}{2}
$$

Using the given data, we obtain an estimate.

$$
\hat{\alpha}=\frac{0.25+0.75+1.50+2.50+2.0}{2 \cdot 5}=0.70
$$

(b) Obtain the method of moments estimator of $\alpha, \tilde{\alpha}$. Calculate the estimate when

$$
x_{1}=0.25, x_{2}=0.75, x_{3}=1.50, x_{4}=2.5, x_{5}=2.0
$$

Solution:

We first obtain the first population moment. Notice the integration is done by identifying the form of the integral is that of the second moment of an exponential distribution.

$$
E[X]=\int_{0}^{\infty} x \cdot \alpha^{-2} x e^{-x / \alpha} d x=\frac{1}{\alpha} \int_{0}^{\infty} \frac{x^{2}}{\alpha} e^{-x / \alpha} d x=\frac{1}{\alpha}\left(2 \alpha^{2}\right)=2 \alpha
$$

We then set the first population moment, which is a function of α, equal to the first sample moment.

$$
2 \alpha=\frac{\sum_{i=i}^{n} x_{i}}{n}
$$

Solving for α, we obtain the method of moments estimator.

$$
\tilde{\alpha}=\frac{\sum_{i=i}^{n} x_{i}}{2 n}=\frac{\bar{x}}{2}
$$

Using the given data, we obtain an estimate.

$$
\tilde{\alpha}=\frac{0.25+0.75+1.50+2.50+2.0}{2 \cdot 5}=0.70
$$

Note that, in this case, the MLE and MoM estimators are the same.

Exercise 3

Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample of size n from a distribution with probability density function

$$
f(x, \beta)=\frac{1}{2 \beta^{3}} x^{2} e^{-x / \beta}, \quad x>0, \beta>0
$$

(a) Obtain the maximum likelihood estimator of $\beta, \hat{\beta}$. Calculate the estimate when

$$
x_{1}=2.00, x_{2}=4.00, x_{3}=7.50, x_{4}=3.00
$$

Solution:

We first obtain the likelihood by multiplying the probability density function for each X_{i}. We then simplify this expression.

$$
L(\beta)=\prod_{i=1}^{n} f\left(x_{i} ; \beta\right)=\prod_{i=1}^{n} \frac{1}{2 \beta^{3}} x^{2} e^{-x / \beta}=2^{-n} \beta^{-3 n}\left(\prod_{i=1}^{n} x_{i}\right) \exp \left(\frac{-\sum_{i=i}^{n} x_{i}}{\beta}\right)
$$

Instead of directly maximizing the likelihood, we instead maximize the log-likelihood.

$$
\log L(\beta)=-n \log 2-3 n \log \beta+\sum_{i=i}^{n} \log x_{i}-\frac{\sum_{i=i}^{n} x_{i}}{\beta}
$$

To maximize this function, we take a derivative with respect to β.

$$
\frac{d}{d \beta} \log L(\beta)=\frac{-3 n}{\beta}+\frac{\sum_{i=i}^{n} x_{i}}{\beta^{2}}
$$

We set this derivative equal to zero, then solve for β.

$$
\frac{-3 n}{\beta}+\frac{\sum_{i=i}^{n} x_{i}}{\beta^{2}}=0
$$

Solving gives our estimator, which we denote with a hat.

$$
\hat{\beta}=\frac{\sum_{i=i}^{n} x_{i}}{3 n}=\frac{\bar{x}}{3}
$$

Using the given data, we obtain an estimate.

$$
\hat{\beta}=\frac{2.00+4.00+7.50+3.00}{3 \cdot 4}=1.375
$$

(b) Obtain the method of moments estimator of $\beta, \tilde{\beta}$. Calculate the estimate when

$$
x_{1}=2.00, x_{2}=4.00, x_{3}=7.50, x_{4}=3.00
$$

Solution:

We first obtain the first population moment. Notice the integration is done by identifying the form of the integral is that of the third moment of an exponential distribution.

$$
E[X]=\int_{0}^{\infty} x \cdot \frac{1}{2 \beta^{3}} x^{2} e^{-x / \beta} d x=\frac{1}{2 \beta^{2}} \int_{0}^{\infty} \frac{x^{3}}{\beta} e^{-x / \beta} d x=\frac{1}{2 \beta^{2}}\left(6 \beta^{3}\right)=3 \beta
$$

We then set the first population moment, which is a function of β, equal to the first sample moment.

$$
3 \beta=\frac{\sum_{i=i}^{n} x_{i}}{n}
$$

Solving for β, we obtain the method of moments estimator.

$$
\tilde{\beta}=\frac{\sum_{i=i}^{n} x_{i}}{3 n}=\frac{\bar{x}}{3}
$$

Using the given data, we obtain an estimate.

$$
\tilde{\beta}=\frac{2.00+4.00+7.50+3.00}{3 \cdot 4}=1.375
$$

Note again, the MLE and MoM estimators are the same.

Exercise 4

Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample of size n from a distribution with probability density function

$$
f(x, \lambda)=\lambda x^{\lambda-1}, \quad 0<x<1, \lambda>0
$$

(a) Obtain the maximum likelihood estimator of $\lambda, \hat{\lambda}$. Calculate the estimate when

$$
x_{1}=0.10, x_{2}=0.20, x_{3}=0.30, x_{4}=0.40
$$

Solution:

We first obtain the likelihood by multiplying the probability density function for each X_{i}. We then simplify this expression.

$$
L(\lambda)=\prod_{i=1}^{n} f\left(x_{i} ; \lambda\right)=\prod_{i=1}^{n} \lambda x_{i}^{\lambda-1}=\lambda^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\lambda-1}
$$

Instead of directly maximizing the likelihood, we instead maximize the log-likelihood.

$$
\log L(\lambda)=n \log \lambda+(\lambda-1) \sum_{i=i}^{n} \log x_{i}
$$

To maximize this function, we take a derivative with respect to λ.

$$
\frac{d}{d \lambda} \log L(\lambda)=\frac{n}{\lambda}+\sum_{i=i}^{n} \log x_{i}
$$

We set this derivative equal to zero, then solve for β.

$$
\frac{n}{\lambda}+\sum_{i=i}^{n} \log x_{i}=0
$$

Solving gives our estimator, which we denote with a hat.

$$
\hat{\lambda}=-\frac{n}{\sum_{i=i}^{n} \log x_{i}}
$$

Using the given data, we obtain an estimate.

$$
\hat{\lambda}=-\frac{n}{\sum_{i=i}^{n} \log x_{i}}=-\frac{4}{\log (0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4)}=0.6631
$$

Note that this is actually a reparameterization of an example seen in class where $\lambda=\frac{1}{\theta}$. Had you realized this, you could have simply found the answer via invariance.
(b) Obtain the method of moments estimator of $\lambda, \tilde{\lambda}$. Calculate the estimate when

$$
x_{1}=0.10, x_{2}=0.20, x_{3}=0.30, x_{4}=0.40
$$

Solution:

We first obtain the first population moment.

$$
E[X]=\int_{0}^{1} x \cdot \lambda x^{\lambda-1} d x=\frac{\lambda}{\lambda+1}
$$

We then set the first population moment, which is a function of β, equal to the first sample moment.

$$
\frac{\lambda}{\lambda+1}=\frac{\sum_{i=i}^{n} x_{i}}{n}=\bar{x}
$$

Solving for λ, we obtain the method of moments estimator.

$$
\tilde{\lambda}=\frac{\bar{x}}{1-\bar{x}}
$$

Using the given data, we obtain an estimate.

$$
\begin{gathered}
\bar{x}=\frac{0.1+0.2+0.3+0.4}{4}=0.25 \\
\tilde{\lambda}=\frac{0.25}{1-0.25}=\frac{1}{3}
\end{gathered}
$$

Note that the MLE and MoM estimators are different.

