STAT 400 Homework 09

Spring 2018 | Dalpiaz | UIUC
Due: Friday, April 6, 2:00 PM

Exercise 1

Let X1, X5,... X, be a random sample of size n from a distribution with probability density function

1
f(z,0) = ae_x/e, x>0,0>0

Note that, the moments of this distribution are given by
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This will be a useful fact for Exercises 2 and 3.

(a) Obtain the maximum likelihood estimator of 6, 0. (This should be a function of the unobserved z; and
the sample size n.) Calculate the estimate when

21 = 0.50, z2 = 1.50, x5 = 4.00, 4 = 3.00.

(This should be a single number, for this dataset.)
Solution:

We first obtain the likelihood by multiplying the probability density function for each X;. We then simplify
this expression.
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Instead of directly maximizing the likelihood, we instead maximize the log-likelihood.
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To maximize this function, we take a derivative with respect to 6.

d _-n S

We set this derivative equal to zero, then solve for 6.
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Solving gives our estimator, which we denote with a hat.



Using the given data, we obtain an estimate.

~ 0.50+1.50 +4.00 + 3
0= =122
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(b) Calculate the bias of the maximum likelihood estimator of 6, . (This will be a number.)

Solution:

Note that we have an exponential distribution.

(¢) Find the mean squared error of the maximum likelihood estimator of 6, 0. (This will be an expression
based on the parameter § and the sample size n. Be aware of your answer to the previous part, as well as the
distribution given.)

Solution:

MSE(f) = [Bias(d)]? + Var ()
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(d) Provide an estimate for P[X > 4] when

21 = 0.50, 5 = 1.50, x5 = 4.00, x4 = 3.00.



Solution:
PIX > 4] = %/?
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P[X > 4]

Exercise 2
Let X1, X5,... X, be a random sample of size n from a distribution with probability density function

flz,a)= a2ze ™ >0, a>0

(a) Obtain the maximum likelihood estimator of «, &. Calculate the estimate when

Ir1 = 0.25, To = 0.75, xr3 = 1.50, Ty = 2.5, Iy = 2.0.

Solution:
We first obtain the likelihood by multiplying the probability density function for each X;. We then simplify

this expression.
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Instead of directly maximizing the likelihood, we instead maximize the log-likelihood.
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To maximize this function, we take a derivative with respect to a.
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We set this derivative equal to zero, then solve for a.
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Using the given data, we obtain an estimate.

0.25+0.75 4 1.50 4+ 2.50 + 2.0
=10.70

“= 2.5

(b) Obtain the method of moments estimator of o, é&. Calculate the estimate when



T, = 0.25, Ty = 0.75, Tr3 = 1.50, Ty4 = 2.5, Is = 2.0.

Solution:
We first obtain the first population moment. Notice the integration is done by identifying the form of the

integral is that of the second moment of an exponential distribution.
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We then set the first population moment, which is a function of «, equal to the first sample moment.
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Using the given data, we obtain an estimate.

0.25+0.75 4+ 1.50 4+ 2.50 + 2.0
=10.70
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Note that, in this case, the MLE and MoM estimators are the same.

Exercise 3
Let X1, X5,...X,, be a random sample of size n from a distribution with probability density function

1
f(xvﬂ) = 27531'2671/67 T > 07 ﬁ >0

(a) Obtain the maximum likelihood estimator of S, j. Calculate the estimate when

T = 2.007 Ty = 4.00, T3 = 7.50, T4 = 3.00.

Solution:
We first obtain the likelihood by multiplying the probability density function for each X;. We then simplify

this expression.
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Instead of directly maximizing the likelihood, we instead maximize the log-likelihood.
log L(B) = —nlog2 — 3nlog 8 + Zlogazi — 21;%



To maximize this function, we take a derivative with respect to 3.
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We set this derivative equal to zero, then solve for 5.
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Solving gives our estimator, which we denote with a hat.
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Using the given data, we obtain an estimate.

- 2.00+4.00 + 7.50 + 3.00
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(b) Obtain the method of moments estimator of 3, 3. Calculate the estimate when

21 = 2.00, 72 = 4.00, x5 = 7.50, x4 = 3.00.

Solution:
We first obtain the first population moment. Notice the integration is done by identifying the form of the

integral is that of the third moment of an exponential distribution.
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We then set the first population moment, which is a function of 3, equal to the first sample moment.
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Solving for 8, we obtain the method of moments estimator.
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Using the given data, we obtain an estimate.

- 2,00 +4.00 +7.50 + 3.00
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Note again, the MLE and MoM estimators are the same.



Exercise 4

Let X1, X5,... X, be a random sample of size n from a distribution with probability density function
fz, ) =X 0<z<1,A>0
(a) Obtain the maximum likelihood estimator of A, A. Calculate the estimate when

21 = 0.10, z9 = 0.20, x5 = 0.30, x4 = 0.40.

Solution:

We first obtain the likelihood by multiplying the probability density function for each X;. We then simplify
this expression.
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Instead of directly maximizing the likelihood, we instead maximize the log-likelihood.

log L(A) = nlog A+ (A= 1)) _logz;

To maximize this function, we take a derivative with respect to \.

d N
n log L(A) = X + izz:ilogxi

We set this derivative equal to zero, then solve for S.

n
%+;logaji =0

Solving gives our estimator, which we denote with a hat.
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Using the given data, we obtain an estimate.

“ n 4
A= - = - =10.6631
S logx; log(0.1-0.2-0.3-0.4)

Note that this is actually a reparameterization of an example seen in class where A = %. Had you realized
this, you could have simply found the answer via invariance.

(b) Obtain the method of moments estimator of A\, X. Calculate the estimate when

21 = 0.10, 22 = 0.20, w3 = 0.30, x4 = 0.40.



Solution:

We first obtain the first population moment.

1
E[X]:A x')\x)\ildl':%_i_l

We then set the first population moment, which is a function of 3, equal to the first sample moment.
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Solving for A, we obtain the method of moments estimator.
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Using the given data, we obtain an estimate.
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Note that the MLE and MoM estimators are different.
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