# STAT 400 Homework 09 

Spring 2018 | Dalpiaz | UIUC
Due: Friday, April 6, 2:00 PM

Please see the detailed homework policy document for information about homework formatting, submission, and grading.

## Exercise 1

Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample of size $n$ from a distribution with probability density function

$$
f(x, \theta)=\frac{1}{\theta} e^{-x / \theta}, \quad x>0, \theta>0
$$

Note that, the moments of this distribution are given by

$$
E\left[X^{k}\right]=\int_{0}^{\infty} \frac{x^{k}}{\theta} e^{-x / \theta}=k!\cdot \theta^{k}
$$

This will be a useful fact for Exercises 2 and 3.
(a) Obtain the maximum likelihood estimator of $\theta, \hat{\theta}$. (This should be a function of the unobserved $x_{i}$ and the sample size $n$.) Calculate the estimate when

$$
x_{1}=0.50, x_{2}=1.50, x_{3}=4.00, x_{4}=3.00
$$

(This should be a single number, for this dataset.)
(b) Calculate the bias of the maximum likelihood estimator of $\theta, \hat{\theta}$. (This will be a number.)
(c) Find the mean squared error of the maximum likelihood estimator of $\theta, \hat{\theta}$. (This will be an expression based on the parameter $\theta$ and the sample size $n$. Be aware of your answer to the previous part, as well as the distribution given.)
(d) Provide an estimate for $P[X>4]$ when

$$
x_{1}=0.50, x_{2}=1.50, x_{3}=4.00, x_{4}=3.00
$$

## Exercise 2

Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample of size $n$ from a distribution with probability density function

$$
f(x, \alpha)=\alpha^{-2} x e^{-x / \alpha}, \quad x>0, \alpha>0
$$

(a) Obtain the maximum likelihood estimator of $\alpha, \hat{\alpha}$. Calculate the estimate when

$$
x_{1}=0.25, x_{2}=0.75, x_{3}=1.50, x_{4}=2.5, x_{5}=2.0
$$

(b) Obtain the method of moments estimator of $\alpha, \tilde{\alpha}$. Calculate the estimate when

$$
x_{1}=0.25, x_{2}=0.75, x_{3}=1.50, x_{4}=2.5, x_{5}=2.0
$$

## Exercise 3

Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample of size $n$ from a distribution with probability density function

$$
f(x, \beta)=\frac{1}{2 \beta^{3}} x^{2} e^{-x / \beta}, \quad x>0, \beta>0
$$

(a) Obtain the maximum likelihood estimator of $\beta, \hat{\beta}$. Calculate the estimate when

$$
x_{1}=2.00, x_{2}=4.00, x_{3}=7.50, x_{4}=3.00
$$

(b) Obtain the method of moments estimator of $\beta, \tilde{\beta}$. Calculate the estimate when

$$
x_{1}=2.00, x_{2}=4.00, x_{3}=7.50, x_{4}=3.00
$$

## Exercise 4

Let $X_{1}, X_{2}, \ldots X_{n}$ be a random sample of size $n$ from a distribution with probability density function

$$
f(x, \lambda)=\lambda x^{\lambda-1}, \quad 0<x<1, \lambda>0
$$

(a) Obtain the maximum likelihood estimator of $\lambda, \hat{\lambda}$. Calculate the estimate when

$$
x_{1}=0.10, x_{2}=0.20, x_{3}=0.30, x_{4}=0.40
$$

(b) Obtain the method of moments estimator of $\lambda, \tilde{\lambda}$. Calculate the estimate when

$$
x_{1}=0.10, x_{2}=0.20, x_{3}=0.30, x_{4}=0.40
$$

