STAT 400 Homework 05

Spring 2018 / Dalpiaz / UIUC
Due: Friday, February 23, 2:00 PM

Exercise 1

Consider a random variable X with the probability mass function

$$
f(x)=\frac{6}{3^{x}}, \quad x=2,3,4,5, \ldots
$$

(a) Find the moment-generating function of $X, M_{X}(t)$. Report the function, being sure to indicate the values of t where the function exists.

Solution:

$$
\begin{aligned}
M_{X}(t)=\mathrm{E}\left[e^{t X}\right] & =\sum_{x} e^{t x} f(x) \\
& =\sum_{x=2}^{\infty} \frac{6 e^{t x}}{3^{x}} \\
& =6 \sum_{x=2}^{\infty}\left(\frac{e^{t}}{3}\right)^{x} \\
& =6 \cdot\left(\frac{\left(\frac{e^{t}}{3}\right)^{2}}{1-\frac{e^{t}}{3}}\right) \\
& =\frac{2 e^{2 t}}{3-e^{t}}, t<\log (3)
\end{aligned}
$$

The restriction on t is necessary since we require that $\left|\frac{e^{t}}{3}\right|$ be less than 1 , otherwise the sum diverges, and the moment generating function does not exist.
(b) Calculate $\mathrm{E}[X]$.

Solution:

$$
\begin{aligned}
M_{X}^{\prime}(t)= & \frac{\left(3-e^{t}\right)\left(4 e^{2 t}\right)-\left(2 e^{2 t}\right)\left(-e^{t}\right)}{\left(3-e^{t}\right)^{2}}=\frac{2 e^{2 t}\left(6-e^{t}\right)}{\left(3-e^{t}\right)^{2}} \\
& \mathrm{E}[X]=M_{X}^{\prime}(0)=\frac{2(6-1)}{(3-1)^{2}}=\frac{5}{2}
\end{aligned}
$$

Alternatively, simply refer to Exercise 3 of Homework 3.

Exercise 2

How much wood would a woodchuck chuck if a woodchuck could chuck wood? Let W denote the amount of wood a woodchuck would chuck per day (in cubic meters) if a woodchuck could chuck wood. Suppose the moment-generating function of W is

$$
M_{W}(t)=0.1 \cdot e^{3 t}+0.3 \cdot e^{2 t}+0.5 \cdot e^{1 t}+0.1
$$

(a) Calculate the average amount of wood a woodchuck would chuck per day, $\mathrm{E}[W]$.

Solution:

Here, we use the moment generating function to generate the first moment, which is exactly the expected value.

$$
\begin{gathered}
M_{W}^{\prime}(t)=0.3 \cdot e^{3 t}+0.6 \cdot e^{2 t}+0.5 \cdot e^{1 t} \\
\mathrm{E}[W]=M_{W}^{\prime}(0)=1.4
\end{gathered}
$$

(b) Calculate $\operatorname{Var}[W]$.

Solution:

Here, we use the moment generating function to generate the second moment.

$$
\begin{gathered}
M_{W}^{\prime \prime}(t)=0.9 \cdot e^{3 t}+1.2 \cdot e^{2 t}+0.5 \cdot e^{1 t} \\
\mathrm{E}\left[W^{2}\right]=M_{W}^{\prime \prime}(0)=2.6
\end{gathered}
$$

We then calculate the variance by using the first and second moments that we had already calcualted.

$$
\operatorname{Var}[W]=\mathrm{E}\left[W^{2}\right]-(\mathrm{E}[W])^{2}=2.6-1.4^{2}=0.64
$$

Alternatively, you could have realized that this moment generating function implies thet the probability mass function of W is given by

$$
f(w)= \begin{cases}0.1 & w=0 \\ 0.5 & w=1 \\ 0.3 & w=2 \\ 0.1 & w=3\end{cases}
$$

then calculated the expected value and variance using the usual definitions. (Consider doing so for practice if you haven't already.)

Exercise 3

Consider a random variable Y with the probability density function

$$
f(y)=\frac{|y|}{5},-1<y<3
$$

(a) Calculate $\mathrm{E}[Y]$.

Distribution of \mathbf{Y}

Solution:

From the picture, it is clear that

$$
f(f)= \begin{cases}-0.2 y & y<0 \\ 0.2 y & y \geq 0\end{cases}
$$

Then we have

$$
\mathrm{E}[Y]=\int_{-\infty}^{\infty} y \cdot f(y) d y=\int_{-1}^{0} y \cdot(-0.2 y) d y+\int_{0}^{3} y \cdot(0.2 y) d y=-\frac{1}{15}+\frac{9}{5}=\frac{26}{15}
$$

(b) Calculate median $[Y]$, the median of Y.

Distribution of \mathbf{Y}

Solution:
Here we need to find m such that

$$
\int_{-\infty}^{m} f(y) d y=0.5
$$

First, note that,

$$
\int_{-1}^{0}(-0.2 y) d y=0.1
$$

Thus, we know that $m>0$.
Now, we need

$$
\int_{-1}^{0}(-0.2 y) d y+\int_{0}^{m}(0.2 y) d y=0.5
$$

That is

$$
\int_{0}^{m}(0.2 y) d y=0.4
$$

Then finally, we have

$$
0.1 \cdot m^{2}=0.4
$$

This implies that

$$
m=2
$$

since -2 is outside the possible values of the random variable.

Exercise 4

Suppose that scores on the previous semester's STAT 400 Exam II were not very good. Graphed, their distribution had a shape similar to the probability density function

$$
f(s)=\frac{1}{9000}(2 s+10), \quad 40 \leq s \leq 100
$$

Assume that scores on this exam, S, actually follow this distribution. (Note: This distribution does not necessarily reflect reality.)
(a) Suppose 10 students from the class are selected at random. What is the probability that (exactly) 4 of them received a score above 85 ?

Distribution of S

Solution:

Define B to be the number of students how receive an 85 or above. Then $B \sim \operatorname{binom}(N=10, p)$ where

$$
\begin{gathered}
p=\int_{85}^{100} \frac{1}{9000}(2 s+10) d s=\left.\frac{s^{2}+10 s}{9000}\right|_{s=85} ^{s=100}=\frac{11000}{9000}-\frac{8075}{9000}=0.325 \\
P(B=4)=\binom{10}{4}(0.325)^{4}(0.675)^{6} \approx 0.2216
\end{gathered}
$$

(b) What was the standard deviation of the scores, $\mathrm{SD}[S]$?

Solution:

$$
\begin{gathered}
\mathrm{E}[S]=\int_{40}^{100} s \cdot \frac{2 s+10}{9000} d s=74 \\
\mathrm{E}\left[S^{2}\right]=\int_{40}^{100} s^{2} \cdot \frac{2 s+10}{9000} d s=5760 \\
\operatorname{Var}[S]=\mathrm{E}\left[S^{2}\right]-(\mathrm{E}[S])^{2}=5760-74^{2}=284 \\
\mathrm{SD}[S]=\sqrt{\operatorname{Var}[S]}=\sqrt{284} \approx 16.8523
\end{gathered}
$$

(c) What was the class 40th percentile? That is, find a such that $P(S \leq a)=0.40$.

Distribution of S

Solution:

Want to find a such that

$$
\int_{40}^{a} \frac{2 s+10}{9000} d s=0.40
$$

That is,

$$
\int_{40}^{a} \frac{2 s+10}{9000} d s=\left.\frac{s^{2}+10 s}{9000}\right|_{s=40} ^{s=a}=\frac{a^{2}+10 a}{9000}-\frac{2}{9}=0.40
$$

Thus,

$$
a^{2}+10 a-5600=0
$$

So -80 and 70 are candidate values.
Finally,

$$
a=70
$$

since $40<70<100$.

Exercise 5

Students often worry about the time it takes to complete an exam. Suppose that completion time in hours, T, for the STAT 400 final exam follows a distribution with density

$$
f(t)=\frac{2}{27}\left(t^{2}+t\right), \quad 0 \leq t \leq 3
$$

What is the probability that a randomly chosen student finishes the exam during the second hour of the exam. That is, calculate $P(1<T<2)$.

Distribution of T

Solution:

$$
P(1<T<2)=\int_{1}^{2} \frac{2}{27}\left(t^{2}+t\right)=\left.\frac{2}{27}\left(\frac{t^{3}}{3}+\frac{t^{2}}{2}\right)\right|_{t=1} ^{t=2}=\frac{28}{81}-\frac{5}{81}=\frac{23}{81}
$$

