STAT 400 Homework 05

Spring 2018 / Dalpiaz | UIUC
Due: Friday, February 23, 2:00 PM

Please see the detailed homework policy document for information about homework formatting, submission, and grading.

Exercise 1

Consider a random variable X with the probability mass function

$$
f(x)=\frac{6}{3^{x}}, \quad x=2,3,4,5, \ldots
$$

(a) Find the moment-generating function of $X, M_{X}(t)$. Report the function, being sure to indicate the values of t where the function exists.
(b) Calculate $\mathrm{E}[X]$.

Exercise 2

How much wood would a woodchuck chuck if a woodchuck could chuck wood? Let W denote the amount of wood a woodchuck would chuck per day (in cubic meters) if a woodchuck could chuck wood. Suppose the moment-generating function of W is

$$
M_{W}(t)=0.1 \cdot e^{3 t}+0.3 \cdot e^{2 t}+0.5 \cdot e^{1 t}+0.1
$$

(a) Calculate the average amount of wood a woodchuck would chuck per day, $\mathrm{E}[W]$.
(b) Calculate $\operatorname{Var}[W]$.

Exercise 3

Consider a random variable Y with the probability density function

$$
f(y)=\frac{|y|}{5},-1<y<3
$$

(a) Calculate $\mathrm{E}[Y]$.
(b) Calculate median $[Y]$, the median of Y.

Exercise 4

Suppose that scores on the previous semester's STAT 400 Exam II were not very good. Graphed, their distribution had a shape similar to the probability density function

$$
f(s)=\frac{1}{9000}(2 s+10), \quad 40 \leq s \leq 100 .
$$

Assume that scores on this exam, S, actually follow this distribution. (Note: This distribution does not necessarily reflect reality.)
(a) Suppose 10 students from the class are selected at random. What is the probability that (exactly) 4 of them received a score above 85 ?
(b) What was the standard deviation of the scores, $\mathrm{SD}[S]$?
(c) What was the class 40th percentile? That is, find a such that $P(S \leq a)=0.40$.

Exercise 5

Students often worry about the time it takes to complete an exam. Suppose that completion time in hours, T, for the STAT 400 final exam follows a distribution with density

$$
f(t)=\frac{2}{27}\left(t^{2}+t\right), \quad 0 \leq t \leq 3
$$

What is the probability that a randomly chosen student finishes the exam during the second hour of the exam. That is, calculate $P(1<T<2)$.

