STAT 400: Homework 01
 Spring 2018, UIUC

Due: Friday, January 26, 2:00 PM

Exercise 1

(a) Evaluate the following integral. Do not use a calculator or computer, except to check your work.

$$
\int_{0}^{\infty} x e^{-2 x} d x
$$

Solution:

Here we have integration by parts. We set

$$
u=x, \quad d v=e^{-2 x} d x
$$

Thus we have

$$
d u=d x, \quad v=-\frac{1}{2} e^{-2 x}
$$

Then we obtain

$$
\int_{0}^{\infty} x e^{-2 x} d x=-\left.\frac{1}{2} x e^{-2 x}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{1}{2} e^{-2 x} d x=\frac{1}{4}=0.25
$$

Note that we are being somewhat abusive with notation since we are dealing with an improper intergral.
(b) Evaluate the following integral. Do not use a calculator or computer, except to check your work.

$$
\int_{0}^{\infty} x e^{-x^{2}} d x
$$

Solution:

Here we use integration by substitution. We set

$$
u=x^{2}
$$

Thus we have

$$
d u=2 x d x
$$

Then we obtain

$$
\int_{0}^{\infty} x e^{-x^{2}} d x=\int_{0}^{\infty} \frac{1}{2} e^{-x^{2}}(2 x d x)=\frac{1}{2} \int_{0}^{\infty} e^{-u} d u=-\left.\frac{1}{2} e^{-u}\right|_{0} ^{\infty}=\frac{1}{2}=0.50
$$

Exercise 2

Find the value c such that

$$
\iint_{A} c x^{2} y^{3} d y d x=1
$$

where $A=\{(x, y): 0<x<1,0<y<\sqrt{x}\}$. Do not use a calculator or computer, except to check your work.

Solution:

Figure 1: Integral Region

First,

$$
\iint_{A} c x^{2} y^{3} d y d x=1=\int_{0}^{1}\left(\int_{0}^{\sqrt{x}} c x^{2} y^{3} d y\right) d x=\int_{0}^{1} \frac{c}{4} x^{4} d x=\frac{c}{20}
$$

Then,

$$
\frac{c}{20}=1 \Longrightarrow c=20
$$

Exercise 3

Suppose $S=\{2,3,4,5, \ldots\}$ and

$$
P(k)=c \cdot \frac{2^{k}}{k!}, \quad k=2,3,4,5, \ldots
$$

Find the value of c that makes this a valid probability distribution.

Solution:

First note that,

$$
\begin{aligned}
\sum_{\text {all } x} P(x) & =\sum_{k=2}^{\infty} c \cdot \frac{2^{k}}{k!} \\
& =c \cdot\left(\sum_{k=0}^{\infty} \frac{2^{k}}{k!}-\frac{2^{0}}{0!}-\frac{2^{1}}{1!}\right) \\
& =c \cdot\left(e^{2}-1-2\right) \\
& =c \cdot\left(e^{2}-3\right)
\end{aligned}
$$

Then since we need to have

$$
\sum_{\text {all } x} P(x)=1
$$

we obtain

$$
c \cdot\left(e^{2}-3\right)=1 \Longrightarrow c=\frac{1}{e^{2}-3} \approx 0.22784 \text {. }
$$

Exercise 4

Suppose $S=\{2,3,4,5, \ldots\}$ and

$$
P(k)=\frac{6}{3^{k}}, \quad k=2,3,4,5, \ldots
$$

Find P (outcome is greater than 3).

Solution:

$$
\begin{aligned}
P(\text { outcome is greater than } 3) & =P(4)+P(5)+P(6)+\ldots \\
& =\sum_{k=4}^{\infty} \frac{6}{3^{k}}=\frac{\text { first term }}{1-\text { base }}=\frac{\frac{6}{3^{4}}}{1-\frac{1}{3}} \\
& =\frac{1}{9}=0.111 \overline{1}
\end{aligned}
$$

Or alternatively,
$P($ outcome is greater than 3$)=1-P(2)-P(3)$

$$
\begin{aligned}
& =1-\frac{6}{3^{2}}-\frac{6}{3^{3}} \\
& =\frac{1}{9}=0.111 \overline{1}
\end{aligned}
$$

Exercise 5

Suppose $P(A)=0.4, P\left(B^{\prime}\right)=0.3$, and $P\left(A \cap B^{\prime}\right)=0.1$.

Figure 2: Venn Diagram for $P(A)=0.4, P\left(B^{\prime}\right)=0.3$, and $P\left(A \cap B^{\prime}\right)=0.1$

	B	B^{\prime}	
A	0.30	$\mathbf{0 . 1 0}$	$\mathbf{0 . 4 0}$
A^{\prime}	0.40	0.20	0.60
	0.70	$\mathbf{0 . 3 0}$	1.00

(a) Find $P(A \cup B)$.

Solution:

$$
\begin{gathered}
P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.40+0.70-0.30=0.80 \\
P(A \cup B)=1-P\left(A^{\prime} \cap B^{\prime}\right)=1-0.20=0.80 \\
P(A \cup B)=P(A \cap B)+P\left(A \cap B^{\prime}\right)+P\left(A^{\prime} \cap B\right)=0.30+0.10+0.40=0.80
\end{gathered}
$$

(b) Find $P\left(B^{\prime} \mid A\right)$.

Solution:

$$
P\left(B^{\prime} \mid A\right)=\frac{P\left(A \cap B^{\prime}\right)}{P(A)}=\frac{0.10}{0.40}=\frac{1}{4}=0.25
$$

(c) Find $P\left(B \mid A^{\prime}\right)$.

Solution:

$$
P\left(B \mid A^{\prime}\right)=\frac{P\left(A^{\prime} \cap B\right)}{P\left(A^{\prime}\right)}=\frac{0.40}{0.60}=\frac{2}{3}=0.66 \overline{6}
$$

Exercise 6

Suppose:

- $P(A)=0.6$
- $P(B)=0.5$
- $P(C)=0.4$
- $P(A \cap B)=0.3$
- $P(A \cap C)=0.2$
- $P(B \cap C)=0.2$
- $P(A \cap B \cap C)=0.1$
(a) Find $P\left((A \cup B) \cap C^{\prime}\right)$.

Solution:

Figure 3: Venn Diagram with $P\left((A \cup B) \cap C^{\prime}\right)$ shaded.

After finding the probabilities for each disjoint region and shading the appropriate venn diagram, we have

$$
P\left((A \cup B) \cap C^{\prime}\right)=0.50
$$

(b) Find $P(A \cup(B \cap C))$.

Solution:

Figure 4: Venn Diagram with $P(A \cup(B \cap C))$ shaded.

After finding the probabilities for each disjoint region and shading the appropriate venn diagram, we have

$$
P(A \cup(B \cap C))=0.70
$$

