1. A random sample of size $n=9$ from a normal $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution is obtained:
4.4
3.7
5.1
4.3
4.7
3.7
3.5
4.6
4.7
a) Compute the sample mean \bar{x} and the sample standard deviation S.

$$
\bar{x}=\frac{\sum x}{n}=\frac{4.4+3.7+5.1+4.3+4.7+3.7+3.5+4.6+4.7}{9}=\frac{38.7}{9}=4.3 .
$$

x	x^{2}
4.4	19.36
3.7	13.69
5.1	26.01
4.3	18.49
4.7	22.09
3.7	13.69
3.5	12.25
4.6	21.16
4.7	22.09

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
4.4	0.1	0.01
3.7	-0.6	0.36
5.1	0.8	0.64
4.3	0	0.00
4.7	0.4	0.16
3.7	-0.6	0.36
3.5	-0.8	0.64
4.6	0.3	0.09
4.7	0.4	0.16
	0	

$$
s^{2}=\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}=\frac{168.83-\frac{(38.7)^{2}}{9}}{8}
$$

$$
=\frac{2.42}{8}=0.3025 .
$$

$$
s=\sqrt{s^{2}}=\sqrt{0.3025}=\mathbf{0 . 5 5}
$$

b) Construct a 95% (two-sided) confidence interval for the overall (population) mean.
σ is unknown. $\quad n=9-$ small. \quad The confidence interval : $\overline{\mathrm{X}} \pm \mathrm{t} \alpha / 2 \cdot \frac{\mathrm{~s}}{\sqrt{n}}$. $n-1=9-1=\mathbf{8}$ degrees of freedom.
95% confidence level, $\quad \alpha=0.05, \quad \alpha / 2=0.025, \quad t_{\alpha / 2}(8)=2.306$.
$4.3 \pm 2.306 \frac{0.55}{\sqrt{9}}$
$\mathbf{4 . 3 0} \pm \mathbf{0 . 4 2 3}$
(3.877 ; 4.723)
c) Construct a 90% one-sided confidence interval for μ that provides an upper bound for μ.
$\mathrm{t}_{0.10}(8)=1.397 . \quad \overline{\mathrm{X}}+\mathrm{t}_{\alpha} \cdot \frac{\mathrm{s}}{\sqrt{n}}=4.3+1.397 \cdot \frac{0.55}{\sqrt{9}}=\mathbf{4 . 5 5 6}$.
$(-\infty, 4.556)$
d) Construct a 95% one-sided confidence interval for μ that provides a lower bound for μ.
$\mathrm{t}_{0.05}(8)=1.860 . \quad \quad \overline{\mathrm{X}}-\mathrm{t}_{\alpha} \cdot \frac{\mathrm{s}}{\sqrt{n}}=4.3-1.860 \cdot \frac{0.55}{\sqrt{9}}=\mathbf{3 . 9 5 9}$.
(3.959, ∞)
e) Construct a 95% (two-sided) confidence interval for the overall standard deviation.

Confidence Interval for $\sigma^{2}: \quad\left(\frac{(n-1) \cdot \mathrm{s}^{2}}{\chi_{\alpha / 2}^{2}}, \frac{(n-1) \cdot \mathrm{s}^{2}}{\chi_{1-\alpha / 2}^{2}}\right)$.
$\alpha=0.05$.

$$
\alpha / 2=0.025 . \quad 1-\alpha / 2=0.975 .
$$

number of degrees of freedom $=n-1=9-1=8$.

$$
\begin{gathered}
\chi_{\alpha / 2}^{2}=17.54 . \quad \chi_{1-\alpha / 2}^{2}=2.180 \\
\left(\frac{(9-1) \cdot 0.3025}{17.54}, \frac{(9-1) \cdot 0.3025}{2.180}\right)
\end{gathered}
$$

Confidence Interval for $\sigma: \quad(\sqrt{0.13797}, \sqrt{1.11009})=\mathbf{(0 . 3 7 1 4} ; \mathbf{1 . 0 5 3 6})$
f) Construct a 90% one-sided confidence interval for σ that provides an upper bound for σ.

$$
\begin{array}{ll}
\left(0, \sqrt{\frac{(n-1) \cdot \mathrm{s}^{2}}{\chi^{2}}}\right) & \chi_{1-\alpha}^{2} \\
\left(0, \sqrt{\frac{(9-1) \cdot 0.3025}{3.490}}\right) & \chi_{0.90}^{2}=3.490 . \\
(\mathbf{(0 , 0 . 8 3 2 7)}
\end{array}
$$

g) Construct a 95% one-sided confidence interval for σ that provides a lower bound for σ.

$$
\begin{array}{ll}
\left(\sqrt{\frac{(n-1) \cdot \mathrm{s}^{2}}{\chi_{\alpha}^{2}}}, \infty\right) & \chi_{\alpha}^{2}=\chi_{0.05}^{2}=15.51 . \\
\left(\sqrt{\frac{(9-1) \cdot 0.3025}{15.51}}, \infty\right) & \mathbf{(0 . 3 9 5}, \infty)
\end{array}
$$

3. Suppose the time spent on a particular STAT 400 homework follows a normal distribution with an overall standard deviation of 28 minutes and an unknown mean.
a) Suppose a random sample of 49 students is obtained. Find the probability that the average time spent on the homework for students in the sample is within 5 minutes of the overall mean.
$\mathrm{P}(\mu-5 \leq \overline{\mathrm{X}} \leq \mu+5)=?$
$n=49$ - large (plus the distribution we sample from is normal). $\quad \frac{\overline{\mathrm{X}}-\mu}{\sigma / \sqrt{n}}=\mathrm{Z}$.
$\mathrm{P}(\mu-5 \leq \bar{X} \leq \mu+5)=\mathrm{P}\left(\frac{(\mu-5)-\mu}{28 / \sqrt{49}} \leq \mathrm{Z} \leq \frac{(\mu+5)-\mu}{28 / \sqrt{49}}\right)$

$$
=\mathrm{P}(-1.25 \leq \mathrm{Z} \leq 1.25)=0.8944-0.1056=\mathbf{0 . 7 8 8 8} .
$$

b) A sample of 49 students has a sample mean of 234 minutes spent on the homework. Construct a 90% confidence interval for the overall mean time spent on the homework.
σ is known.
The confidence interval :

$$
\overline{\mathrm{X}} \pm \mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{n}} .
$$

$\alpha=0.10 \quad \alpha / 2=0.05 . \quad \mathrm{Z}_{\alpha / 2}=1.645$.
$234 \pm 1.645 \cdot \frac{28}{\sqrt{49}}$
234 ± 6.58
($227.42 ; 240.58$)
c) What is the minimum sample size required if we want to estimate the overall mean time spent on the homework to within 5 minutes with 90% confidence?
$n=\left(\frac{\mathrm{z} \alpha / 2 \cdot \sigma}{\varepsilon}\right)^{2}=\left(\frac{1.645 \cdot 28}{5}\right)^{2}=84.86 . \quad$ Round up. $n=\mathbf{8 5}$.
4. An economist states that 10% of Springfield's labor force is unemployed. A random sample of 400 people in the labor force is obtained, of whom 28 are unemployed.
$n=400, \quad y=28, \quad \hat{\mathrm{p}}=\frac{y}{n}=\frac{28}{400}=0.07$.
a) Construct a 95% confidence interval for the unemployment rate in Springfield.

The confidence interval :

$$
\hat{\mathrm{p}} \pm \mathrm{z}_{\alpha / 2} \cdot \sqrt{\frac{\hat{\mathrm{p}} \cdot(1-\hat{\mathrm{p}})}{n}}
$$

$\begin{array}{lcc}95 \% \text { confidence level } & \alpha=0.05 & \alpha / 2=0.025 .\end{array} \quad \mathrm{z}_{\alpha / 2}=1.960$.
b) What is the minimum sample size required in order to estimate the unemployment rate in Springfield to within 2\% with 95% confidence? (Use the economist's guess.)

Use $p^{*}=0.10$ (the economist's guess). $\quad \varepsilon=0.02$.
$n=\left(\frac{\mathrm{z}}{\alpha / 2}\right)^{2} \cdot p^{*} \cdot\left(1-p^{*}\right)=\left(\frac{1.960}{0.02}\right)^{2} \cdot 0.10 \cdot 0.90=864.36$.
Round up. $\quad n=865$.
c) What is the minimum sample size required in order to estimate the unemployment rate in Springfield to within 2% with 95% confidence? (Assume no information is available.)

Use $p^{*}=0.50$ (since no information is available).

$$
\varepsilon=0.02 \text {. }
$$

$n=\left(\frac{\mathrm{z} \alpha / 2}{\varepsilon}\right)^{2} \cdot p^{*} \cdot\left(1-p^{*}\right)=\left(\frac{1.960}{0.02}\right)^{2} \cdot 0.50 \cdot 0.50=\mathbf{2 4 0 1}$.
5. The proportion of defective items is not supposed to be over 15%. A buyer wants to test whether the proportion of defectives exceeds the allowable limit. The buyer takes a random sample of 100 items and finds that 19 are defective.
$n=100, \quad y=19, \quad \hat{\mathrm{p}}=\frac{y}{n}=\frac{19}{100}=0.19$.
a) Construct a 95% confidence interval for the overall proportion of defective items.

The confidence interval :

$$
\hat{\mathrm{p}} \pm \mathrm{z}_{\alpha / 2} \cdot \sqrt{\frac{\hat{\mathrm{p}} \cdot(1-\hat{\mathrm{p}})}{n}} .
$$

95\% confidence level

$$
\alpha=0.05
$$

$$
\alpha / 2=0.025
$$

$$
\mathrm{z}_{\alpha / 2}=1.960
$$

$0.19 \pm 1.960 \cdot \sqrt{\frac{(0.19)(0.81)}{100}}$
0.19 ± 0.077
($0.113,0.267$)
b) What is the minimum sample size required in order to estimate the overall proportion of defective items to within 3% with 95% confidence? (Assume that the overall proportion of defective items is at most 0.20 .)

Use $p^{*}=0.20$ (the closest to 0.50 possible value). $\varepsilon=0.03$.
$n=\left(\frac{\mathrm{z} \alpha / 2}{\varepsilon}\right)^{2} \cdot p^{*} \cdot\left(1-p^{*}\right)=\left(\frac{1.960}{0.03}\right)^{2} \cdot 0.20 \cdot 0.80=682.9511$.
Round up. $\quad n=683$.
6. A coffee machine is regulated so that the amount of coffee dispensed is normally distributed. A random sample of 17 cups is given below:

8.15	7.93	8.04	7.80	8.02	7.92
8.18	7.65	7.73	8.15	7.68	7.85
7.97	7.70	7.75	7.87	8.08	

a) Compute the sample mean and the sample standard deviation.

b) Construct a 90% confidence interval for the overall average amount of coffee dispensed by the machine.
$n=17 . \quad \alpha=0.10$.
σ is unknown.
The confidence interval : $\quad \overline{\mathrm{X}} \pm \mathrm{t}_{\alpha / 2} \frac{\mathrm{~S}}{\sqrt{n}}$.
$\alpha / 2=0.05 . \quad$ number of degrees of freedom $=n-1=17-1=16$.
$\mathrm{t}_{\alpha / 2}=1.746 . \quad 7.91 \pm 1.746 \cdot \frac{0.175}{\sqrt{17}} \quad \mathbf{7 . 9 1} \pm \mathbf{0 . 0 7 4}$
(7.836, 7.984)
7. 7.1-10 6.2-12

A leakage test was conducted to determine the effectiveness of a seal designed To keep the inside of a plug airtight. An air needle was inserted into the plug, and the plug and needle were placed under water. The pressure was then increased until leakage was observed. Let X equal the pressure in pounds per square inch. Assume that X follows a normal distribution. The following 10 observations of X were recorded:
$\begin{array}{llllllllll}3.1 & 3.3 & 4.5 & 2.8 & 3.5 & 3.5 & 3.7 & 4.2 & 3.9 & 3.3\end{array}$
a) Find a point estimate of μ using the observations.

$$
\bar{x}=\mathbf{3 . 5 8 0} ;
$$

b) Find a point estimate of σ using the observations.

$$
s^{2}=\frac{2.356}{9} \approx 0.261778, \quad s \approx \mathbf{0 . 5 1 1 6 4}
$$

c) Find a 95% confidence upper bound for μ.

$$
\begin{aligned}
& t_{0.05}(9)=1.833 \\
& (0,3.580+1.833 \cdot 0.51164 / \sqrt{10})=(\mathbf{0}, \mathbf{3 . 8 7 6 6})
\end{aligned}
$$

8. 7. continued
d) Construct a 95% (two-sided) confidence interval for σ.

$$
\left.\left(\sqrt{\frac{9 \cdot 0.261778}{19.02}}, \sqrt{\frac{9 \cdot 0.261778}{2.700}}\right)=\mathbf{(0 . 3 5 1 9 5}, \mathbf{0 . 9 3 4 1 3}\right) ;
$$

e) Find a 95% confidence upper bound for σ.

$$
\left(0, \sqrt{\frac{9 \cdot 0.261778}{3.325}}\right)=(\mathbf{0}, \mathbf{0 . 8 4 1 7 7})
$$

9. Analysis of the venom of seven 8-day-old worker bees yielded the sample mean histamine content (nanograms) of 640, with sample standard deviation of 200. Construct a 90% confidence interval for average histamine content for all worker bees of this age. (Assume that the histamine content is approximately normally distributed.)
σ is unknown
The confidence interval: $\quad \overline{\mathrm{X}} \pm \mathrm{t}_{\alpha / 2} \frac{\mathrm{~S}}{\sqrt{n}}$.
$n-1=7-1=6$ degrees of freedom $\quad \alpha=0.10 \quad t_{0.05}=1.943$
$640 \pm 1.943 \cdot \frac{200}{\sqrt{7}}$
640 ± 146.877
(493.123 ; 786.877)
10. Suppose the IQs of students at Anytown State University are normally distributed with standard deviation 15 and unknown mean.
a) Suppose a random sample of 64 students is obtained. Find the probability that the average IQ of the students in the sample will be within 3 points of the overall mean.
$\sigma=15 . \quad \mu=? \quad n=64$.
Need $P(\mu-3 \leq \bar{X} \leq \mu+3)=$?

$n=64-$ large (plus the distribution we sample from is normal).

Central Limit Theorem:

$$
\frac{\overline{\mathrm{X}}-\mu}{\sigma / \sqrt{n}}=\mathrm{Z} .
$$

$$
\begin{aligned}
\mathrm{P}(\mu-3 \leq \overline{\mathrm{X}} \leq \mu+3) & =\mathrm{P}\left(\frac{(\mu-3)-\mu}{15 / \sqrt{64}} \leq \mathrm{Z} \leq \frac{(\mu+3)-\mu}{15 / \sqrt{64}}\right) \\
& =\mathrm{P}(-1.60 \leq \mathrm{Z} \leq 1.60)=\Phi(1.60)-\Phi(-1.60) \\
& =0.9452-0.0548=\mathbf{0 . 8 9 0 4}
\end{aligned}
$$

b) A sample of 64 students had a sample mean IQ of 115. Construct a 95% confidence interval for the overall mean IQ of students at Anytown State University.
$\overline{\mathrm{X}}=115$
$\sigma=15$
$n=64$
σ is known.
The confidence interval :
$\overline{\mathrm{X}} \pm \mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$.
$\alpha=0.05 \quad \alpha / 2=0.025 . \quad \mathrm{Z}_{\alpha / 2}=1.96$.
$115 \pm 1.96 \cdot \frac{15}{\sqrt{64}}$
115 ± 3.675
($111.325 ; 118.675$)
c) What is the minimum sample size required if we want to estimate the overall mean IQ of students at Anytown State University to within 3 points with 95\% confidence?
$\varepsilon=3 . \quad \sigma=15 . \quad \alpha=0.05 . \quad \alpha / 2=0.025 . \quad \mathrm{Z}_{\alpha / 2}=1.96$.
$n=\left(\frac{\mathrm{z}_{\alpha / 2} \cdot \sigma}{\varepsilon}\right)^{2}=\left(\frac{1.96 \cdot 15}{3}\right)^{2}=\mathbf{9 6 . 0 4} . \quad$ Round up. $\quad n=\mathbf{9 7}$.
d) Suppose that only 20% of the students at Anytown State University have the IQ above 130. Find the overall average IQ of the students.

Know $\mathrm{P}(\mathrm{X}>130)=0.20$.
(1) Find z such that $\mathrm{P}(\mathrm{Z}>z)=0.20$.

	$\Phi(z)=0.80$.
(2)	$x=\mu+\sigma \cdot z$.

"Hint": From now on, you have μ.
e) Find the probability that the sample average IQ will be 115 or higher for a random sample of 64 students.

Need $P(\bar{X} \geq 115)=$?
$n=64-$ large (plus the distribution we sample from is normal).

$$
\begin{aligned}
& \frac{\overline{\mathrm{X}}-\mu}{\sigma / \sqrt{n}}=\mathrm{Z} . \\
& \mathrm{P}(\overline{\mathrm{X}} \geq 115)=\mathrm{P}\left(\mathrm{Z} \geq \frac{115-117.4}{15 / \sqrt{64}}\right)=\mathrm{P}(\mathrm{Z} \geq-1.28)=1-\Phi(-1.28) \\
& =1-0.1003=\mathbf{0 . 8 9 9 7} \text {. }
\end{aligned}
$$

f) Only students in the top 33% are allowed to join the science club. What is the minimum IQ required to be able to join the science club?

Need $x=$? such that $\mathrm{P}(\mathrm{X}>x)=0.33$.
(1) Find z such that $\mathrm{P}(\mathrm{Z}>z)=0.33$.

$$
\begin{array}{rlr}
& \Phi(z)=0.67 . & z=0.44 . \\
\text { (2) } & x=\mu+\sigma \cdot z . & x=117.4+15 \cdot(0.44)=\mathbf{1 2 4 .}
\end{array}
$$

g) What proportion of the students have IQ of 127 or above?

$$
\begin{array}{r}
\mathrm{P}(\mathrm{X} \geq 127)=\mathrm{P}\left(\mathrm{Z} \geq \frac{127-117.4}{15}\right)=\mathrm{P}(\mathrm{Z} \geq 0.64)=1-\Phi(0.64) \\
=1-0.7389=\mathbf{0 . 2 6 1 1}
\end{array}
$$

h) Find the probability that exactly 13 out of 64 randomly and independently selected students have IQ of 127 or above.

Let $\mathrm{Y}=$ number of students (out of the 64 selected) who have IQ of 127 or above. Then Y has Binomial distribution, $\quad n=64, \quad p=0.2611$ (see part (g)).
$\mathrm{P}(\mathrm{Y}=13)=\binom{64}{13} 0.2611^{13} 0.7389^{51}=\mathbf{0 . 0 6 8 3 7}$.
11. In a highly publicized study, doctors claimed that aspirin seems to help reduce heart attacks rate. Suppose a group of 400 men from a particular age group took an aspirin tablet three times per week. After three years, 56 of them had had heart attacks. Let p denote the overall proportion of men (in this age group) who take aspirin that have heart attacks in a 3-year period.
a) Construct a 90% confidence interval for p.

$$
n=400, \quad x=56, \quad \hat{p}=\frac{x}{n}=\frac{56}{400}=0.14
$$

The confidence interval : $\hat{p} \pm \mathrm{z}_{\alpha / 2} \cdot \sqrt{\frac{\hat{p} \cdot(1-\hat{p})}{n}}$.
$\alpha=0.10 . \quad \alpha / 2=0.05 . \quad \mathrm{Z}_{\alpha / 2}=1.645$.
$0.14 \pm 1.645 \cdot \sqrt{\frac{(0.14) \cdot(0.86)}{400}} \quad \mathbf{0 . 1 4} \pm \mathbf{0 . 0 2 8 5}$
($0.1115,0.1685$)
b) Construct a 95% confidence interval for p.

$$
\alpha=0.05 . \quad \alpha / 2=0.025 . \quad \mathrm{z}_{\alpha / 2}=1.96
$$

$0.14 \pm 1.96 \cdot \sqrt{\frac{(0.14) \cdot(0.86)}{400}} \quad \mathbf{0 . 1 4} \pm \mathbf{0 . 0 3 4}$
($0.106,0.174$)
c) Find the 99% confidence upper bound for p.

$$
\begin{array}{ll}
\left(0, \hat{p}+\mathrm{z}_{\alpha} \cdot \sqrt{\frac{\hat{p} \cdot(1-\hat{p})}{n}}\right) & \alpha=0.05 .
\end{array} \mathrm{z}_{\alpha}=2.326 .
$$

12.* (0) Let X have a $\chi^{2}(r)$ distribution. If $k>-r / 2$, prove (show) that $\mathrm{E}\left(\mathrm{X}^{k}\right)$ exists and it is given by

$$
\begin{gathered}
\mathrm{E}\left(\mathrm{X}^{k}\right)=\frac{2^{k} \Gamma\left(\frac{r}{2}+k\right)}{\Gamma\left(\frac{r}{2}\right)} . \\
\mathrm{E}\left(\mathrm{X}^{k}\right)=\int_{0}^{\infty} x^{k} \cdot \frac{1}{\Gamma(r / 2) 2^{r / 2}} x^{(r / 2)-1} e^{-x / 2} d x \\
=\frac{2^{k} \Gamma\left(\frac{r}{2}+k\right)}{\Gamma\left(\frac{r}{2}\right)} \cdot \int_{0}^{\infty} \frac{1}{\Gamma\left(\frac{r}{2}+k\right) 2^{\frac{r}{2}+k}} x^{\frac{r}{2}+k-1} e^{-x / 2} d x \\
= \\
2^{k} \Gamma\left(\frac{r}{2}+k\right) \\
\Gamma\left(\frac{r}{2}\right)
\end{gathered} \quad \text { since } \frac{1}{\Gamma\left(\frac{r}{2}+k\right) 2^{\frac{r}{2}+k} x^{\frac{r}{2}+k-1} e^{-x / 2}}
$$

is the p.d.f. of $\chi^{2}(r+2 k)$ distribution.

6.4-14 (a),(b)
 6.1-14 (a),(b)

Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ be a random sample of size n from a $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution.
(a) Show that an unbiased estimator of σ is $c \mathrm{~S}$, where

$$
c=\frac{\sqrt{n-1} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{2} \Gamma\left(\frac{n}{2}\right)} .
$$

Hint: Recall that $\mathrm{X}=(n-1) \mathrm{S}^{2} / \sigma^{2}$ has a $\chi^{2}(n-1)$ distribution.
"Hint": Select the appropriate value for k in part (0).

From part (0), if $r=n-1$ and $k=1 / 2$, then

$$
\mathrm{E}\left(\frac{\sqrt{n-1} \mathrm{~S}}{\sigma}\right)=\frac{\sqrt{2} \Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)}
$$

Therefore,

$$
\mathrm{E}\left(\frac{\sqrt{n-1} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{2} \Gamma\left(\frac{n}{2}\right)} \cdot \mathrm{S}\right)=\sigma, \quad \text { and } \frac{\sqrt{n-1} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{2} \Gamma\left(\frac{n}{2}\right)} \cdot \mathrm{S} \text { is unbiased for } \sigma .
$$

(b) Find the value of c when $n=5$; when $n=6$.

$$
\begin{aligned}
& \text { Recall } \\
& \Gamma(x)=(x-1) \Gamma(x-1) . \\
& \Rightarrow \quad \Gamma(n)=(n-1)!\quad \text { if } n \text { is an integer. } \\
& \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \\
& n=5 \quad c=\frac{\sqrt{4} \Gamma\left(\frac{4}{2}\right)}{\sqrt{2} \Gamma\left(\frac{5}{2}\right)}=\frac{2 \cdot 1}{\sqrt{2} \cdot\left(\frac{3}{2}\right)\left(\frac{1}{2}\right) \sqrt{\pi}}=\frac{8}{3 \sqrt{2 \pi}} \approx 1.063846 . \\
& n=6 \quad c=\frac{\sqrt{5} \Gamma\left(\frac{5}{2}\right)}{\sqrt{2} \Gamma\left(\frac{6}{2}\right)}=\frac{\sqrt{5} \cdot\left(\frac{3}{2}\right)\left(\frac{1}{2}\right) \sqrt{\pi}}{\sqrt{2} \cdot 2}=\frac{3 \sqrt{5 \pi}}{8 \sqrt{2}} \approx 1.050936 . \\
& n=7 \quad c \approx 1.042352 . \\
& n=8 \quad c \approx 1.036237 . \\
& n=9 \quad c \approx 1.031661 . \\
& n=10 \quad c \approx 1.028109 \text {. } \\
& c \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

