1. Let X and Y have the joint probability density function

$$
f_{\mathrm{X}, \mathrm{Y}}(x, y)=C x y^{2}, \quad 0<x<y<1, \quad \text { zero otherwise. }
$$

a) What must the value of C be so that $f_{\mathrm{X}, \mathrm{Y}}(x, y)$ is a valid joint p.d.f.?
b) Find the marginal probability density function of $\mathrm{X}, f_{\mathrm{X}}(x)$. Include its support.
c) Find the marginal probability density function of $\mathrm{Y}, f_{\mathrm{Y}}(y)$. Include its support.
d) Find $\mathrm{P}(\mathrm{X}+\mathrm{Y}<1)$.
e) Let $a>1$. Find $\mathrm{P}(\mathrm{Y}<a \mathrm{X})$.
f) Are X and Y independent? If not, find $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$.
2. Let S and T have the joint probability density function

$$
f_{\mathrm{S}, \mathrm{~T}}(s, t)=\frac{1}{t}, \quad 0<s<1, \quad s^{2}<t<s
$$

a) Find $f_{\mathrm{S}}(s)$ and $f_{\mathrm{T}}(t)$.
b) Find $E(S)$ and $E(T)$.
c) Find the correlation coefficient ρ_{ST}.
3. Let X and Y be random variables with

$$
\begin{array}{ll}
E(X)=\mu_{X}=25, & S D(X)=\sigma_{X}=4, \\
E(Y)=\mu_{Y}=40, & S D(Y)=\sigma_{Y}=3,
\end{array} \quad \operatorname{Corr}(X, Y)=\rho=-0.50 . ~ \$
$$

a) Find $\mathrm{E}(2 \mathrm{X}+5 \mathrm{Y})$ and $\mathrm{SD}(2 \mathrm{X}+5 \mathrm{Y})$.
b) Find $E(4 Y-5 X)$ and $\operatorname{SD}(4 Y-5 X)$.
4. One piece of PVC pipe is to be inserted inside another piece. The length of the first piece is normally distributed with mean value 25 in . and standard deviation 0.9 in. The length of the second piece is a normal random variable with mean and standard deviation 20 in . and 0.6 in ., respectively. The amount of overlap is normally distributed with mean value 1 in . and standard deviation 0.2 in . Assuming that the lengths and amount of overlap are independent of one another, what is the probability that the total length after insertion is between 43.45 in . and 45.65 in.?
5. A gas station sells three grades of gasoline: regular unleaded, extra unleaded, and super unleaded. These are priced at $\$ 1.55, \$ 1.70$, and $\$ 1.85$ per gallon $*$, respectively. Let $\mathrm{X}_{1}, \mathrm{X}_{2}$, and X_{3} denote the amounts of these grades purchased (gallons) on a particular day. Suppose the X_{i} 's are independent with $\mu_{1}=1,000, \mu_{2}=500$, $\mu_{3}=300, \sigma_{1}=100, \sigma_{2}=80$, and $\sigma_{3}=50$. If the X_{i} 's are normally distributed, what is the probability that revenue exceeds ...
a) $\$ 2,600$.
b) $\quad \$ 3,000$?
6. Suppose that the actual weight of "10-pound" sacks of potatoes varies from sack to sack and that the actual weight may be considered a random variable having a normal distribution with the mean of 10.2 pounds and the standard deviation of 0.6 pounds. Similarly, the actual weight of "3-pound" bags of apples varies from bag to bag and that the actual weight may be considered a random variable having a normal distribution with the mean of 3.15 pounds and the standard deviation of 0.3 pounds. A boy-scout troop is planning a camping trip. If the boy-scouts buy 3 "10-pound" sacks of potatoes and 4 "3-pound" bags of apples selecting them at random, what is the probability that the total weight would exceed 42 pounds?

[^0]7. Every month, the government of Neverland spends X million dollars purchasing guns and Y million dollars purchasing butter. Assume X and Y are independent, X has a Normal distribution with mean 265 and standard deviation 40 (in millions of dollars), and Y has a Normal distribution with mean 170 and standard deviation 30 (in millions of dollars).
a) Find the probability that the government of Neverland spends more on guns than on butter during a given month. That is, find $\mathrm{P}(\mathrm{X}>\mathrm{Y})$.
b) Find the probability that the government of Neverland spends more on guns than twice the amount it spends on butter during a given month. That is, find $\mathrm{P}(\mathrm{X}>2 \mathrm{Y})$.
c) Find the probability that the government of Neverland exceeds the 500-million spending limit during a given month. That is, find $\mathrm{P}(\mathrm{X}+\mathrm{Y}>500)$.
8. The previous problem is not very realistic X and Y should NOT be independent, but the correlation coefficient of X and Y should be negative. Assume X has a Normal distribution with mean 265 and standard deviation 40 (in millions of dollars), and Y has a Normal distribution with mean 170 and standard deviation 30 (in millions of dollars). Assume also that the correlation coefficient of X and Y is $\rho=-0.56$. Assume that any linear combination of X and Y is normally distributed

production possibilities frontier (that would be the case if X and Y jointly have a Bivariate Normal distribution [4.54 .4]).
a) Find the probability that the government of Neverland spends more on guns than on butter during a given month. That is, find $\mathrm{P}(\mathrm{X}>\mathrm{Y})$.
b) Find the probability that the government of Neverland exceeds the 500-million spending limit during a given month. That is, find $\mathrm{P}(\mathrm{X}+\mathrm{Y}>500)$.
"Hint": In each case, find the mean and the variance of the appropriate linear combination of X and Y first.

[^0]: * This problem was written long time ago.

